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Preface

This study was designed to research and develop the methodology necessary
to implement a general computer program that determines an approximate solu-
tion to a system of Fredholm integral equations. The computer program was
designed to be easily converted into an excellent research and analysis tool for the

Defense Nuclear Agency's underground nuclear effects simulation testing program.

Due to the symbols used during the study, two lists of symbols are provided.
The first List of Symbols contains the symbols used to develop the methodology
for this study. The second list is located in Tab 1 of Appendix C and contains all

the variables used in the development of the computer program.

In conducting this study, I received guidance and strength from a number of
people. First, I would like to thank my thesis advisor LCDR. Kirk A. Mathews
for the assistance and knowledge he provided during my study. I would also like
to thank my thesis committee; Dr. George John, Maj. Jim A. Lupo, and Lt. Col.
Albert Alexander (from the Defense Nuclear Agency) for their assistance in com-
piling and completing this final copy of my thesis. Also a special thanks to
LCDR. Mathews and Lt. Col. Alexander for their assistance in arranging my
assignment to Field Command Defense Nuclear Agency as radiation diagnostician
based on the knowledge gained during this study. Lastly, I would like to thank
my wife, Karen, for her needed assistance in typing as well as moral support dur-

ing this study.

Russell B, Dauiel
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‘t':l"'-" Abstract A
s
The purpose of this study was to develop the methodology for and to imple- ;E )
ment a computer program to approximate a solution to a system of Fredholm '?E v
)

integral equations. The system of equations used in this study is representative of L

the equations formed during the detection of pulsed radiation using a series of :

detectors with asymmetric response functions. Though general in nature and :'_:'.:_
applicable to all systems of Fredholm integral equations, the equations studied are ) .
of importance to the Defense Nuclear Agency with regard to the measurement of > .
radiation spectra during underground nuclear effects simulation testing. S;

The deconvolution or solution technique consisted of representing the '\

unfolded spectrum as a weighted sum of basis functions. This unfolded spectrum, \
the actual spectrum, and a predicted spectrum were then used to form a )(2 test :’E

statistic. By adjusting the parameters in the basis functions and their weights, x? "
was minimized and the unfolded spectrum was corrected to approximate the ) 8

actual spectrum.

The methodology for this deconvolution technique was then converted into a ".\

general computer program. The validation cases conducted on the two types of ._
spectra confirmed the reliability of the methodology and the computer program?
Additionally, an initial study with simulated measurement error added to the .
measured-to-predicted ratios showed that the actual spectrum could not be :"..-

returned exactly. The second study approximated the actual spectrum with an ,

unfolded spectrum using a second set of basis functions. An acceptable approxi- '-.._-.
mation was conducted; however, certain artifacts were discovered in the unfolded ,.
spectrum. :E:;'.
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The validation cases and preliminary test cases conducted prove that the

7

’ e
oS

&

computer program based on the methodology presented in this study is a viable

oV

means of approximating an actual radiation spectrum. Using this study and com-

Sl e

)
&

7,

puter program as a starting point, the study of new basis functions and the effect

4

I.' '}

-
-

of how well the actual spectrum can be approximated based on the number of

Lo

detectors available to determine the spectrum is recommended.
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AN APPROXIMATION TECHNIQUE FOR SOLVING
A SYSTEM OF FREDHOLM INTEGRAL EQUATIONS
FOR ASYMMETRIC DETECTOR RESPONSE FUNCTIONS

['d l:.'d
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I Introduction

Background

Approximate solutions to systems of Fredholm integral equations are needed
by the Air Force in many fields of study, ranging from acoustics to optics. Such
solutions also occur in disciplines as varied as geology and astronomy. An
instance of particular importance to the Air Force arises in the measurement of
radiation spectra emitted by nuclear devices detonated underground by the
Defense Nuclear Agency for simulation of nuclear weapons effects. This study
developd an approximate solution for a set of Fredholm integral equations of type

e
1 of the following form:

where

Y™ = the measured signal of the ith detector
S,(E£) = the actual spectrum as a function of energy
R,(E) = the calibrated response function of the ith

detector as a function of energy

In the detection of pulsed radiation, a set of detectors covering various energy
ranges is used to obtain a set of measured signals. Each of these measured signals
can be represented by an equation of the form of Equation (1). Since the response
functions of these detectors are not rectangular in shape with neglible width and
since a finite number of detectors must be used, only a limited resolution of the
actual spectrum can be achieved. In order to achieve a reasonable resolution a

. filter-fluorescer detection system is utilized. The detectors and their response

functions are discussed in detail in Section II.
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Also, the experimenter does not know the actual spectrum or the exact
response functions of the detectors. However, the experimenter can calibrate the
detectors used and produce calibrated response functions for the detectors. The
experimenter can also predict the shape of the actual spectrum based on source
design and previous measurements. Thus, at the end of the experiment, the
experimenter has the measured signals, a predicted spectrum, and the calibrated
response functions of the detectors to use in approximating the actual spectrum.
The procedure used to conduct this approximation is called deconvolution or

unfolding.

Problem

The measured signals discussed above are the best information the experi-
menter has concerning the ideal signal (the error free signals from the actual spec-
trum.) These measured signals contain recording error and transmission error in
addition to the error due to the response functions. These errors are discussed in
detail in Section II. The main problem addressed in this study was the develop-
ment of the methodology necessary to conduct a general deconvolution of the
actual spectrum from the set of calibrated response functions and the set of meas-
ured signals noted in Equation (1). In other words, the known measured signals,
calibrated response functions, and the predicted spectrum are used to determine
an unfolded spectrum. When this unfolded spectrum is folded with the calibrated
response functions, an approximation to the measured signals are returned. This
unfolded spectrum is then used as an approximation to the actual spectrum.
Secondly, a computer program was developed to conduct this deconvolution using

various basis functions to construct the unfolded spectrum.
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Scope

Since unclassified experimental data was unavailable, this study considered
spectra that were constructed of either normalized planckian black body distribu-
tions, called planckians, or of cubic splines. During the study, a trial spectrum
was constructed and used as the actual spectrum. This spectrum was then used
to calculate the ideal signals or measured signals if simulated measurement errors
are introduced. First, a study was conducted to determine if the basis functions
could be used to unfold an actual spectrum produced from the same type of basis
functions with no error introduced. Then a study was conducted to demonstrate
the effects of simulated measurement error in the measured-to-predicted ratios on
the unfolded spectrum. This simulated error represented the errors between the
ideal signal and the measured signal. Finally, a study was conducted to deter-
mine if the basis functions could be used to unfold an actual spectrum constructed
from another set of basis functions. The energy range considered in this study
was from E{ to 128E ., where E? (the k edge of the fluorescer for the first detec-

tor) is used as a convenient arbitrary energy unit.

Assumptions

In the development of the methodology. a basic assumption was that the
nonuniqueness of the actual spectrum and the errors developed in the mathemat-
ics of an analytic solution required the approximation technique to be numerical.
Also in order to define or bound the study and to allow a test method to be

developed, the following assumptions are made:

1. Twenty detectors are available to conduct the experiment. Thirteen
detectors have a closed response function and seven detectors have an

open response function, as described in Section III.

2. A resolving power (E center/ A E) of about 1.5 is desired.

1-3
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3. The exact response functions are equal to the calibrated response func- 7
A <
N tions, as described in Section II. (This does not restrict the applicability :
of this analysis, since calibration errors are indistinguishable from other N
measurement and recording errors.) -
',
General Approach
The approach used in this study was to define an unfolded spectrum using a N
series of basis functions: :-.:
.‘\-
iy
SuE)=3 o, F;(E.P) (2) 3
J=1 A
where o
~
S, (E) = the unfolded spectrum :
a, = the coefficient for the jth basis function
F;(E,P) = the jth basis function g
nj = the number of basis functions -
.'. E = energy .
P = the parameter(s) of F, "
N
-
The next step was to compute a X° test statistic using the ratios of the ideal N
Y
signal to the predicted signal and the ratios of the unfolded signal to the predicted
signal, together with the measurement uncertainties of these ratios. These ratios -
-
. 3 . . . 3 . - . 0 - -.
are defined in detail in Section IIl. This x? test statistic was then minimized using <
the Fletcher-Powell technique to vary the parameters and weighting factors or
coeflicients in the basis functions of the unfolded spectrum. The term parameters ]
will refer to the parameters of the function as well as the coeflicients for the func- 2
tion in the remainder of this study. _
Sequence Of Presentation N
-
. . . 3 . » \‘
Section II of this study presents a detailed analysis of the problem including ~
L
other deconvolution methods currently being used and possible errors to be con-
1-4
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sidered. Section III presents the theory used to develop the computer program
while Section IV presents the development of the computer program. Section V
presents the results and a discussion of these results for the validation cases and
the test cases conducted using the computer program. The test cases investigated
the strengths and weaknesses of the two types of basis functions and the effect
simulated measurement error in the measured-to-predicted ratios had on the
unfolding technique using these basis functions. Section VI then summarizes the
study and presents my conclusions. Recommendations for future studies are

presented in Section VII.
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o (LI
Ny -'.r_;‘z
; Introduction
”,
’. - .
W In Section I, the main problem addressed was stated to be the determination
g
o of the methodology and the implementation of a computer code to approximate
the actual spectrum in Equation (1), the Fredholm integral equation. The pur-
v pose of this section is to describe the types of errors found in unfolding tech-
e niques, to explain how these errors were handled, and to present the two most
- popular unfold techniques.
2
'.: Errors Introduced During Unfolding
During the unfolding process, four main errors contribute to the uncertainty
in the unfolded spectrum. The first is simply the measurement error introduced
o in the measured signals. If the same test was conducted a number of times, a
7 " mean value for the measured signals could be established along with a standard
i e g 4
U . . : .
. deviation. This measurement error includes the errors introduced form the
" transmission of the ideal signals, the recording of the ideal signals, and the read-
A ing of the ideal signals. However, in underground testing and the detection of
‘N
<. conmic radiation by satellites, the experimenter only makes one test. Thus, the
- experimenter must be aware of and account for the possible error introduced by

the statistical nature of the measured signals.

- The second error is fourd in the response functions of the detectors. No

matter how carefully an experimenter calibrates the detectors, one will not be able

D)
S e
A

to determine the exact response functions of the detectors. This difference
between the exact response functions and the calibrated response functions is the

. second type of error introduced in the unfolding procedure. .

»
. PRI
et a4 o 4 o

The third error is found in the mathematics of the unfolding process. The

-
.

f-. 'J

- P J
> R . . . ) . . ]
A error is introduced by converting the Fredholm integral into a summation over 9
-I'_' .q
' 3
. )
> X
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very small energy intervals. However, this error can be reduced so as to be negli-
“u N
o gible compared to the other errors by selecting the proper energy intervals or bin

widths to evaluate the integral.

The final error to be discussed is that caused by the nonuniqueness of the
solution or approximation to the actual spectrum. Because the approximation of

the actual spectrum requires an infinite amount of detail to be resolved from a

hChiat e Ak e ot M s g g an aa an an o LA RS

finite amount of information, the solution is non-unique and the problem is ill-

posed. The limited number of detectors and their response functions ensure that
the experimenter can not resolve all the detail of the spectrum. Thus, the
unfolded signals of a number of spectra could be identical even though the spectra
are different. If a detector with a response function which is shaped like a rectan-
gle with neglible width was available at every energy level, the actual spectrum
could be determined exactly. Since this is not possible or feasible, the experi-
menter must be reminded of the nonuniqueness of the approximation to actual

spectrum or the unfolded spectrum.

Errors in Actual Practice Versus Simulated Errors in This Study

Of the four errors introduced above, two are handled differently in this study
than they are in actual practice. In actual practice, the measurement error and
the error introduced by not knowing the exact response functions are present in
the measured signals. These errors are then carried over to the measured-to-
predicted ratios. However in order to account for these errors, the experimenter
will approximate the standard deviation of these measured-to-predicted ratios, «,
and use this as a weighting factor for the \? test statistics as discussed in the neat
section. This o, is based on the knowledge gained from past experiments and the

calibrations conducted an the detecton.

In this study, it was assumed that the exact response functions were equal to

the calibrated response functions and since the signals were not measured, recorde,
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: -:i‘ or transmitted, the measurement errcrs normally found in the measured signals

. were not present. Thus, when an actual spectrum was folded with the calibrated
5: response functions to determine a set of measured signals, these two types of

5 error, the measurement error and the calibration error, were not present and the
"‘ measured signal was equal to the ideal signal. In order to introduce these errors
Z'- in this study, an option to apply a normal distribution to the measured-to-
.\, predicted ratios was included. This is discussed in detail in Section III.

) The third error, the error due to evaluating the Fredholm integrals, is present
} in both the actual case and this study. As discussed in Section III, the error

:: becomes negligible in both cases by selecting a small bin width. Finally the fourth
: error is also a part of both cases and was demonstrated by studying the unfolding
E of an actual spectrum using the two different sets of basis functions.

“,-' The mathematical propagation of the four errors discussed above was not

‘ ‘. ronsidered in this study. However, the propagation of the errors was demon-

::: strated by the study conducted using the simulated measurement error. Also. the
:j calibration error may be considered as part of the simulated measurement error.
::L Current Unfolding Techniques

N

" A number of computer programs have been developed to approximate the
actual spectrum implicitly given in Equation (1). However, two techniques, the

- iterative technique and the cubic spline technique, are the most common (6). This
' section will describe the two techniques and some of their weaknesses.

g Iterative Technique (6). The widely used iterative technique starts hy
folding a trial spectrum with the calibrated response functions of the detectors
and comparing these measured signals to the measured signals from the experi-
ment. The trial spectrum is then moditied and smoothed to ensure non-negativity
and continuity. The procedure is then repeated until the two sets of measured

g
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signals converge. By allowing the measured signals to converge, various artifacts
such as discontinuities and spikes are usually introduced in the trial spectrum.
Thus, the procedure is generally continued only until the computed signals for the
trial spectrum are brought into an acceptable agreement with the measured sig-

nals, but stopped before unacceptable artifacts develop in the trial spectrum.

The iterative technique has three main limitations. First, because the itera-
tion is not allowed to converge, the shape of the unfolded spectrum depends on
the initial guess at the trial spectrum. Secondly, the technique provides little
information to allow for error analysis. Finally, the decision to stop the iteration

before unacceptable artifacts develop forces the technique to be user dependent.

Cubic Spline Technique (6). The cubic spline technique used here is based
on the method developed at the Lockheed Palo Alto Research Laboratory. The
technique consists of building an unfolded spectrum from a set of cubic splines
with each cubic spline in the set being multiplied by an expansion coefficient. The
cubic splines used are piecewise L.agrangian interpolating splines and are not the
cominon B-splines. In the cubic spline technique the knot locations are adjusted
and the number of knots used is varied to obtain the best unfolded spectrum or
approsimation to the actual spectrum. The cubic spline technique is an excellent
approximating technique: however, the main limitation of the eubic spline tech-
nique is the dependence on the knot locations or points used to develop the enhice
~pline<. This Bmitation is redueed by selecting the best loeations for the knots

before developing the cubie splines,
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IOI. Theoretical Development

Introduction

In the last section, the overall problem and the two most common techniques
to solve this problem were presented. This section presents the theory used to
develop the methodology for the computer program in this study, including the
selection of the response functions; the definition of the various spectra and sig-
nals; the formulation of a x? test statistic; the minimization of this x? test statis-
tic; the calculation of a normal distribution for simulating measurement error; and

the inclusion of a flux non-negativity constraint.

Response Functions

As stated in Section I, this study assumes the exact response functions are
equal to the calibrated response functions and that twenty detectors will be used
in the experiment. Two types of detector systems will be used in this study. The
first detection system is a filter-fuorescer detection system and produces a closed
response function. This closed response function consists of a section that is simi-
lar to a narrow rectangle and is an approximation to an ideal response function.
This section is referred to as the “inband" response and has a response between
the k-edge of the fluorescer and the k-edge of the filter. However, a second section
or tail section is also present in the closed response function. The tail section is
formed by the response of the detector to energies above the k-edge of the filter.

The closed response function is depicted in Figure 1.

The second detection system is a fluorescer detection system and produces an
open response function. This second set of response functions allows the experi-
menter to determine the measured signals using a different set of response fune-

tions and thus reduce the possibility of errors in the measured signals from the
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response functions. The inband response function for this system is defined to be

(7 ¢
LN

of the same width as the corresponding closed response function. This response

function is depicted in Figure 2.

The next step was to define the open and closed response functions. The
derivation of the response functions can be found in Appendix A, and is based on
a simplification of the detector response function presented by G.M. Gorbachenko
and others in reference (4). The response functions used in the study are asym-
metric and present a simple, but realistic and analytically representable shape.
Additionally, the response functions allow for an unbiased unfolding using various
basis functions to define the unfolded spectrum since ; the response functions are
not modeled by planckians or cubic splines. Equations (3) and (4) represent the

closed and open response functions used in this study.
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RS = the closed function of the ith detector
R’ = the open response function of the ith detector
E? = the k—edge of the fluorescer for the ith detector
E;! = the k—edge of the filter for the ith detector

E = energy

t = the ith detector
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With each detector having a resolving power of about 1.5, the experimenter

can achieve a fifty percent overlap in the inband response functions of the detec-
tors by using thirteen closed response detectors. The other seven detectors can
then be used as open response detectors covering the entire energy range. With
the detectors arranged in this manner, the experimenter is able to detect the entire
spectrum using the inband response functions even if a detector fails. This fact is
extremely important when fielding experiments. For this detector arrangement,
the k-edges of the filter and/or fluorescer for the detectors are as listed in Table I.
Thus, Equation (3) corresponds to detectors 1 to 13 and Equation (4) corresponds

to detectors 14 to 20.

TABLE [
-Edges for the 20 Detectors (a)
Det.# | EO | E! | Det# | E° | E}
1.0 2.0 11 12, 24.0

1.9 3.0 18 16.0
3.0 6.0 19 32.0
10 6.0 12.0 20 £4.0

a. E® and E;' are computed with respect to E?

1

2 2.0 4.0 12 240 | 480
3 4.0 8.0 13 480 | 96.0
4 8.0 16.0 14 1.0

2 16.0 32.0 15 2.0

6 32.0 64.0 16 1.0

{ 64.0 | 128.0 17 8.0

8

9

Deflnition of Spectra

During the radiation detection and deconvolution process, three spectra are
required. The first spectrum is the actual spectrum (S,(£)). The actual spectrum
is unknown and the goal of the deconvolution process is to recover an approxima-
tion to the actual spectrum from the measured signals as discussed below.
Secondly, the process requires a predicted spectrum (S, (E)). This predicted spec-
trum is based on basic physics and on all the available knowledge concerning Elle

spectral shape. This predicted spectrum is used to calculate the measured-to-
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predicted and unfolded-to-predicted ratios. Thus, a wrong predicted spectrum
will still allow a proper deconvolution of the approximation to the actual spec-
trum; but in the iterative scheme and the multiplier spline approach, the detail of
the predicted spectrum is intentionally retained (8). Also, an error could be intro-
duced by dividing a very small predicted signal, or a predicted signal of 0.0, into a
large measured signal or vice versa. So the best possible predicted spectrum is

desired.

The final spectrum required is the unfolded spectrum (S, (E)). This spec-
trum is the approximation to the actual spectrum and is produced during the
deconvolution process (i.e. the unfolding of the Fredholm equation based on the
actual spectrum as implicitly defined in Equation (1)). This unfolded spectrum is

given by:

S.(E) = S a;F,(E,P) (5)

J=1
where

nj = the number of basis functions be used
a; = the coefficient for the jth basis function
FJ-(E,P) = the jth basis function and is a function of
energy and some other parameter(s) P

The basis functions are the building blocks used to construct the unfolded spec-
trum. This study examined planckians and cubic splines as sets of basis func-
tions. The planckian function is given by Equation (6) (1:5.5) and the cubic
spline basis functions are four point Lagrangian interpolating splines. The splines
are discussed in the next section and are derived in Appendix B.
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QN AN T = the temperature of the black body distribution
» k ‘.‘
* - k = the Boltzman constant
RN
-",,.': Flux Non-Negativity Constraint
¥ In the detection of radiation spectra, a negative radiation intensity at any
energy level is physically meaningless. However by choosing an inappropriate set
".:'.7 of basis functions for the unfolded spectrum or having faulty data, a negative
; spectral value may be produced during deconvolution. In order to ensure a posi-
tive spectrum, a non-negativity option was included in the computer program.
e
: Equation (7) represents the technique used to ensure the spectra remained posi-
[ , tive-
“ﬁj‘:‘
EX o 0.0 S,(E)<0.0 i
2 BV = s, 8)  s(E)>200 (%)
Pad
~
f-'.‘_ . where S,’ (E) is the constrained unfolded spectrum
[ Ve
- Definition of Signals
k-
- Using the three spectra defined previously, four signals are defined. The first K
’; is the ideal signal (Y*(E). However, as discussed earlier, the ideal signal is unk-
{‘ * . 3 . l.
' nown due to calibration error in the response functions and measurement and 4
. | | -:
- detection uncertainty. These ideal signals are approximated by the measured sig- A
> . . )
nals from the detectors used during the experiment ( Y,”(E)). These measured W
-.I.I. ‘
o signals contain the errors and uncertainty discussed above. This error and uncer-
o tainty is represented by o,, the estimated standard deviation of the measured-to- ]
predicted ratios caused by the error distribution in Y;™. The predicted signal
. 1
% (YP(E)) is then given by:
™ :- 0
~- YHE)= [S,(E)R,(E)dE (8)
0 -
Y . <
Y o where i
-.'J,: )1
& ;
" 1
- 3-7
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R;(E) = the calibrated response function of the ith

L T

detector, either open or closed depending on the

detector

The final signal is the unfolded signal, (Y,%(£)), and is given by:

Formulation of x? Test Statistic

For convenience, the measurements in this study are specified as ratios to the
predicted signals rather than in engineering units (which could not be interpreted
without detailed knowledge of the experiment). Thus, two ratios are defined.
The first is b,, the measured-to-predicted ratio. This ratio approximates the

ideal-to-predicted ratio. The measured-to-predicted ratio is given by:

Y=
P = 7 (10)
The second ratio is the unfolded-to-predicted ratio, ¢,, and is given by:
e
¢ = Y? (11)

Thus, the objective of the unfolding or deconvolution process is to choose the

[}

a;'s and parameter(s), P, in the F (E,P)'s of Equation (5) to minimize the
difference between ¢; (which depends on them) and b, (which is dependent on the
measurement data). In order to give appropriately increased weight to the more

accurate detectors, a Y test statistic was formulated and minimized. Equation

_[C_ldjﬂ (12)

S,
] ~

(12) defines the x? test statistic.
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A
- ns = the number of detectors
_’3‘, o, = the standard deviation in the ith measured—to—predicted ratio
-3
~ . .
N However, before x? can be minimized, the above mentioned signal integrals
- must be evaluated. In this study, the composite midpoint rule was used to
numerically evaluate all integrals. Since the detectors only detected the spectrum
- above E 0, the integrals were evaluated beginning at this energy. Also, the
o integral was truncated at 128*E?. The approximation to the signal integrals is
}\: given in Equation (13).
:::-
N 128E¢ "
- J SJ(E)R(E)E = 3, S,(Ey)R,(Ey)AE, (13)
"y E? k=1

where

SN
-
®

nk = the number of energy bins

-
A

AR E, = the midpoint energy for the kth energy bin

:'._j AFE}, = the energy bin width of the kth bin

':l: By selecting narrow energy bin widths, the error introduced in the unfolding pro-
o cess because of Equation (13) becomes negligible when compared to the other
errors. Table II presents a study using one planckian basis function with a, equal
N2

-7 to 2.0 and a temperature of 5.0EQ to evaluate the unfolded signal. Due to the
= equal resolution of the detectors, only one detector was used as an example.

-

’-

< Minimization of y? Test Statistic
o

) Once x* was defined using a trial spectrum, an iterative process to minimize
\_ x? was required. Three methods were studied. The first method conducted the
"

minimization by a least squares analysis. This method was useful for linear

optimization; but, the method was not applicable for adjusting the temperatures

'-" :. :.;
S

o in the planckians or adjusting the knots for the cubic splines. Also, the




TABLE II
omparison of the Unfolded Signals Using
Varving Energy Bin Widths

Bin Width Y? R,

0.4d5 1.48 closed
3.69 open
0.10 1.48 closed
3.65 open
0.25 1.48 closed
3.69 open
0.90 1.50 closed
3.66 open
1.00 L.60 closed
3.66 open

et

method could not be used with the flux non-negativity constraint. Finally, a large

¢ £ 5"
A )

Lot g
L]

amount of computer time would be used calculating inverse matrices. The calcu-

lation of the inverse of a matrix also presented a possible problem. The matrix
could be singular or near singular. However, this last problem could be corrected
by selecting the appropriate basis functions. Based on the need for a flux non-

negativity constraint, the method was rejected.

The second technique studied was the steepest descent method of minimiza-
tion. This technique proved reliable but required a large number of iterations
when the number of parameters in the basis function or the number of basis func-

tions was increased.

The Fletcher-Powell minimization technique was the third method tested and
was selected for use in this study. The method consists of calculating the gradient
of the function, ¥?, and then multiplying this gradient matrix by a correction

matrix which modifies the search direction. A detailed description of the method

can be found in references (3) and (5:75-76).

Two problems do exist with this method. The Fletcher-Powell method was
designed for those functions for which the gradient can be determined analyti-
cally. However in this study, the gradient must be calculated numerically. Thus,

an additional error is added into the calculation. Secondly, the method is used to
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find a local minimum and does not guarantee this local minimum to be the global
minimum. However, during this study the local minimum problem was not
encountered since the basis functions used contained only one local minimum or

global minimum.

Once the search direction was determined using the Fletcher-Powell method,
the distance to move in that direction had to be calculated. This distance was
calculated by using a line search routine to minimize x*(param.+t*s). In this
study, t is the step size or distance to move in the search direction and s is the
unit search direction calculated in the Fletcher-Powell minir..ization technique.
Note that a search direction is based on the gradient of x? and is a function of all

the parameters used in the basis functions.

Two line search routines were evaluated during this study. The first method

consisted of calculating the value of \? at two locations and comparing the values.

The lower value for \? was retained and the search interval was expanded or
reduced in order to further minimize x®. This method was continued until the
interval between two locations was less than a given value. Finally, the total dis-
tance travelled was calculated. This value was then used as the distance to travel

in the search direction.

The second method evaluated and the one selected for this study used the
value and slope of \? at two locations to construct a cubic fit. This cubic 8t was
then used to determine the distance to travel in the search direction. Reference
(5:76-80) presents the method in detail. One modification to the method was
required. If the functional values of \? are equal and the slope of the second or
new location in the search direction is O, then the search distance is set equal to

the distance traveled between the original v* location and this final \? locatioa.
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SE RS Normal Distribution for Simulating Measurement Error

A EERAYY

. Once the basic unfolding technique was determined, the ability to add simu-
‘o)
e

:',: lated measurement error to b, was added. The method employed to calculate this

N

o normal distribution for the simulated measurement error is found in reference
I (7:949-953) and is given by:
o

:'} ” 5

o n n

g Z, = o, U, ——(|— 14
~ ' ' 2, 720112 (1)
Y Py

o) where

P

<7 : :
A U, = the jth number in a sequence of psuedo—random
l.'--
;o numbers distributed in the interval [0.1]

a n = the number of psuedo—random numbers utilized
..-P‘

s::-
g For simplicity, twelve values of U, were used. These values were obtained using a

random number generator available on the UNIX computer system. A sample of

A @ . . . .
,Z | it ten normal variates generated in this way was tested for skewness and kurtosis.

"'\"

Cad . o . N

o [n both tests, the distribution could not be rejected as normal.
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IV. Development of the Computer Program

Introduction

In Section III, the basic theory used to develop the methodology involved in
the deconvolution or unfolding technique was discussed. This section presents the
procedure used to convert this methodology into a general computer program.
The program was developed in five basic steps: development of the test spectra;
development of a planckian unfolding program; addition of simulated measure-
ment error; development of the cubic spline basis functions; and formalization of
the final program. Each step is presented in this section along with a discussion

of the problems encountered.

Development of Test Spectra

In the field experiment the signals are produced and measured during the
experiment; thus the predicted spectrum, S, (E ). the calibrated response functions,
R, (E). the measured-to-predicted ratios, b,. and the estimated standard devia-
tions of the measured-to-predicted ratios, o,, are known. However in order to
conduct this study these values had to be simulated. By selecting parameters for
a set of basis functions, an actual spectrum was simulated using the same method
as used to produce an unfolded spectrum in Equation (5). The actual spectrum
was then folded with the calibrated response functions derived in Section III to
simulate the measured signals. The predicted spectrum and signals were also pro-
duced in this manner. Finally, the estimated standard deviations for the
measured-to-predicted ratios were defined. This program assumes the same stan-

dard deviation for each detector.

Planckian Unfolding Code

The second step of the computer development consisted of writing a program

based on the methodology in Section III that could unfold the actual spectrum

R e L L
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using the same type of basis function for the unfolded spectrum as was used to
construct the actual spectrum. In order to simplify the calculation required, the
integral used to calculate the predicted signal in Equation (8) was normalized.
The calibrated response functions were then multiplied by this normalization con-
stant. Thus, the measured-to-predicted and unfolded-to-predicted ratios are sim-
ply the measured signal and unfolded signal. However, the calibrated response

functions that were multiplied by the normalization constant must be used to cal-

culate these signals.

To accomplish this, a set of planckian basis functions were selected as the
basis functions for the actual, predicted, and unfolded spectra. The computer
program used the Fletcher-Powell minimization technique to vary the parameters
and coefficients in the basis functions of Equation (5) and determine the best
parameters for the unfolded spectrum. The program was validated using one, two,
and three basis functions. In all cases, the predicted spectrum was set equal to

the actual spectrum.

This validation is discussed in Section V. During this validation, the two
methods for determining the search distance is discussed in Section Il were com-

pared. Since the cubic fit was faster and required fewer iterations of the line

search subroutine, it was selected.

During this validation a possible problem was uncovered even though the
problem did not aflect the validation. The operator of the computer program
should note that it is possible for the delta used in the calculation of the gradient
during the minimization of ¥? to be greater than the step size or distance traveled

in the search direction. When this occurs, a possible error in the calculation of ¥?

could result.

The validation of the Fletcher-Powell method also included a cfomparison of

the number of iterations required before convergence for this method and the
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o :::; steepest descent method. The Fletcher-Powell technique was dramatically more ‘
_ ) efficient and required fewer iterations, especially with the larger number of param-

_: eters.

.‘\‘

:": Based on this first program and its modification, the technique selected to

_ minimize X? was the Fletcher-Powell minimization technique with the modified ;

-" cubic line search routine. In addition the flux non-negativity constraint discussed :

3 in Section III was used in this program. X

-‘_:. Simulated Measurement Error .

': The third step of the program development was the user option to add simu- 3

2".‘: lated measurement error to b;. The simulated measurement error was used to

.:j:'.‘ account for the calibration errors and the errors from the measurement, recording,

E and transmission of the ideal spectrum. This was accomplished by inserting the

‘. computer code necessary to calculate Equation (14). The simulated measurement

error option was included in the program immediately after 8, was calculated

and o; was defined.

» ' . B
e ;"A"l"n.' l"‘t.'b'\ L

TR
’ Cubic Spline Basis Function .
Once the general program was developed and validated using the planckian
. basis functions, another basis function subroutine was added to allow for the

actual, predicted, and unfolded spectra to be constructed from either planckians

or cubic splines.

The cubic spline basis function consisted of two linear segments. a planckian

7 tail, and a variable number of cubic spline segments. The segments were defined
'»:. between two consecutive knot locations. The cubic splines used were cubic
:_:'_:. Lagrangian interpolating splines. The basis functions were then defined as the
for o combination of four segment functions. The details of this cubic spline basis func- R
:" o tion is presented in Appendix B.
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Two forms of this new subroutine were considered and developed. The first
form required the knots used in determining the cubic splines to be fixed. This
form was validated as shown in Section V. However, in order to effectively
minimize X3, the knots must be considered variable. In other words, the knots
were considered parameters of the cubic splines. The final version of the program

used the cubic splines with variable knots as a possible type of basis function.

Decon7.f

Decon7.f is the final version of the deconvolution or unfolding program
presented in this study. The computer program allows for planckian basis func-
tions, cubic spline basis functions, or other spectra (input from a file) to be used
as the actual and predicted spectra and either the planckians or the cubic splines
can be used to define the unfolded spectrum. The program then uses the
Fletcher-Powell minimization technique combined with the modified cubic line
search routine to minimize ¥? by modifying the parameters in the basis functions
used to produce the final unfolded spectrum. The next section will present the
validation and results of this program. In addition, the documentation and

pseudo-code for the program are presented in Appendix C and the source code is

presented in Appendix D.
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V. Results and Discussion

Introduction

45
.

Section IV discussed the development of the computer program, during which

.l "

several validation cases were considered. This section presents those validation

LY

cases as well as the results from the preliminary study on the effects of simulated

Pt

measurement error in the measured to predicted ratios and the weaknesses of the

LS 5 T ALY

s

two types of basis functions. For this study a final x? value of less than or equal

"I f'.?".

o

to the number of detectors used was considered acceptable. Also, in this section,

fﬂ‘
.

the initial spectrum refers to the initial guess at the unfolded spectrum, and the

$5 5%

actual and predicted spectra are identical.

D P P )
" %

Validation Cases

The validation cases presented were developed to ensure the computer pro-
gram was functioning properly and to test the methodology used to construct the
computer program. The goal of the validation cases was to unfold the exact spec-
trum that was used to construct the measured signals. For these cases, an arbi-
trary spectrum was selected as the actual spectrum and this spectrum was then
folded with the calibrated response functions to define the measured signals. As
mentioned above, the predicted spectrum was identical to the actual spectrum.
Also, simulated measurement error was not added to the measured-to-predicted
ratios. Finally, another arbitrary spectrum was selected as the initial guess at the
unfolded spectrum. In order to validate the computer program and the methodol-

ogy. the unfolded spectrum should converge to the actual spectrum.

Case BP. These cases represent the benchmark or validation cases for the
planckian basis functions. The three cases presented validate the use of one, two,
and three basis functions. The results of these validation ca~ - ire presented in
Table III. In addition, a more detailed validation of the one basis function case is

presented in Appendix E. In all the planckian benchmark cases, the unfolded

5-1
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; J_:, spectrum was indistinguishable from the actual spectrum when plotted as noted in
A
! Table NI since the parameters of the unfolded spectrum converged to those of the
: actual spectrum.
TABLE 11l
Validation Cases for Planckian Basis Functions (a,b)
Case Spectrum Parameters(c) 2
BF1 BF2 BF3
a T a T a T
BP1 Actual 20 5.0
Initial 1.0 6.0
Unfolded 2.0 5.0 9.8E-4
BP2 Actual 30 6.0 80 100
Initial 50 2.0 1.0 7.0
Unfolded 30 6.0 80 100 5.9E-3
BP3 Actual 80 50 20 100 1.0 15.0
Initial 30 20 4.0 6.0 2.0 8.0
Unfolded 80 50 1.9 9.9 1.1 15.0 2.6E-2

a. Convergence criteria: X°< 0.01 or less than a 1% change in x? for successive
iterations

i . b. o, = .01
: c. BF stands for basis function

Case BF. The first four BF cases represent using cubic splines with fixed
knots as the basis function and using the same knots for the actual, predicted,
and unfolded spectra. These cases validated the use of the cubic spline basis func-
tions with the methodology validated in the BP cases. The results of these cases
are presented in Table [V. Once again, the unfolded and actual spectra were

identical when plotted and the parameters of the spectra also converged.

Four additional cases were also considered. These last four cases were used
to validate the applicability of using fixed knots. In these cases. the knots used to
form the actual and predicted spectra were different than those used to form the

unfolded spectra. As expected, the deconvolution technique was unable to correct

for the error in the knot locations.
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e Thus, all four cases yielded a X? of greater than 20. The table of results and
plots for these cases can be found in Appendix E. Based on these results, the knot

locations were included as parameters in the basis functions.

TABLE IV
Validation Cases for Cubic Spline

Basis Functions with Fixed Knots (a,b,c)

Case Spectrum Cubic Coeflicient T N
BF1 & Actual 40 50 30 16 1.0 100
BF2(d)
BF1 Initial 20 70 1.0 30 40 100
Unfolded 40 50 3.0 1.6 1.0 10.0 4.3E-3
BF2 Initial 20 7.0 10 30 40 200
Unfolded 40 50 30 18 10 100 43E-4
BF3 & Actual 40 50 30 16 1.0 100
BF 4(e)
BF3 Initial 20 70 10 30 40 200
Unfolded 40 50 30 16 10 100 24E-3
BF4 Initial 20 70 10 30 40 2.0
Unfolded 40 50 3.0 1.6 1.0 10,0 6.6E-4

a. Convergence criteria: x2< 0.01 or less than a 0.01% change in X* for succes-

(r- sive iterations.

1, b. o, =0.01
Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are
not listed.

. Kanots for case BF1 and BF2 were 5.0.10.0.25.0.50.0
e. Knots for case BF3 and BF4 were 10.0,25.0,50.0,80.0

Case BC. The BC cases were formulated to validate the computer pro-
gram using the cubic spline basis functions with variable knots. As explained in
Appendix B, these basis functions were formed by combining four, four point
Lagrangian interpolating polynomials. Each basis function was a function of the

knots selected to construct the polynomials and the intensity at these knot loca-

tions. The results of these cases are presented in Table V. The linear plots of the

actual and unfolded spectra for all cases are located in Appendix E.

“r NN S
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These validation cases presented the following noteworthy points. First, the

study presented the difficulty the computer program had in varying the knot loca-

tion. The program was only able to determine an acceptable spectra in three of
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.............................
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e Validation Cases for Cubic Spline v
! Basis Functions with Variable Knots (a,b,c) A5
, Case Spectrum Parameters 2 -~
v Knots Coeflicients T N
Y BC1 Actual 50 300 5.0 3.0 150 \
‘ 60.0 2.0 1.0 ¥
Initial 20 150 1.0 4.0 8.0 )
35.0 6 0,2.0 =
Unfolded 12.0 13.0 4.8 1.5 13.0 230.0 o
28.0 044 1.5 P
.’:
BC2 Actual 50 100 4.0 50 10.0 o
25.0 500 3.0 1.6
1.0
Initial 2.0 15,0 3.0 2.0 5.0
35.0 60.0 5.0 1.0
o 2.0
‘ Unfoided 40 11.0 4.0 49 10.0 5.4
280 3530 2.7 1.6
- 0.88
BC3 Actual 5.0 10.0 4.0 6.0 10.0
25.0 500 5.0 3.0
80.0 2.0 1.0
) Initial 2.0 15.0 1.0 3.0 4.0
@ 300 450 5.0 1.0
T 60.0 3.0 2.0
Unfolded 2.4 13.0 3.9 4.8 12.0 18.0
37.0 490 4.2 2.3
62.0 2.0 1.8
BC4 Actual 5.0 30.0 5.0 3.0 15.0
60.0 2.0 1.0
Initial 40 350 4.0 4.0 13.0
50.0 3.0 2.0
Unfolded 4.5 300 5.0 3.2 15.0 0.026
60.0 2.0 1.0
a. 0"' = 0.01
b. Convergence criteria: x*< 0.01 or less than 0.19% change in ¥X? for successive
iterations

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are
not listed.

the four cases. The case that was rejected used three fixed knots and three vari-
able knots. This case represented the minimum number of knots possible in order

to have at least one section of the spectrum that is constructed from four cubic

’y

PR

‘y

A splines. This difficulty is most likely due to the fact that the six knot cubic is

constrained to a linear or planckian fit in all but one section. Thus, the small
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variations in the knot locations cause only a small change in X* and the computer
program is finally stopped due to such small changes in x2. More computer time
could be used to determine if the value for X? is finally reduced but a better solu-
tion is to select another set of basis functions, add more knots, or change the knot
locations. This is shown by the accuracy of the unfolded spectrum for case BC4

when the initial guess was close to the actual spectrum as compared to case BC1.

Finally, the validation results for the cubic spline basis functions show the
need for an accurate guess at the knot locations. By optimizing the selection of
knots for the initial guess at the unfolded spectrum, the cubic splines with vari-
able knots would resemble the cubic splines with fixed knots and a better unfolded
spectrum should be produced. This optimization could be conducted by unfolding
signals produced using the predicted prior to unfolding the real data. However,
this will not ensure the best knot are selected since the actual spectrum may not
compare to the predicted. Thus, the dependency of the cubic spline deconvolution

technique on the knot locations is verified.

Test Cases

Once the final computer program was validated, two preliminary studies were
conducted. The first was a study to determine the effect of simulated measure-
ment error in the b;'s on the deconvolution process. The second study was con-
ducted to demonstrate the degree to which the unfolded spectrum would approxi-

mate the actual spectrum if different basis functions were used for the respective

spectra.

Simulated Measurement Error Study. As stated, this study consisted
of adding a simulated measurement error to b; in order to simulate the measure-
ment errors discussed is Sections II and IV and which are present in the experi-
mental data. This simulated measurement error was constructed using Equation

(14). As noted, the normal distribution was scaled by o,, the standard deviation
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RN of the measured to predicted ratio. Ten cases with simulated measurement error :;:’,
e .
=~ and one benchmark case without the simulated error were tested for each type of )
"
basis function. A o, of 0.15 was used in all cases. This o, was a relative error -
o
and not an absolute error. In other words, the o,’s were the percent of error in =z
s
the 4,'s. The benchmark case was labeled case 0 while all other cases were num- 5
bered according to the number used as the seed for the random number generator. :
W
Tables VI and VII represent the results of this study. Figures 3 thru 6 depict the -;:',.
combined spectra for each case. Appe ndix F contains the individual plots of the .
Ry
actual and unfolded spectra for each case. -_,.
W
]
TABLE VI NN
Noise Study For oA
Planckian Basis Functions (a) '
Case Parameters X3 TF(c) o
BF1 BF2 BF3 NG
a T a T a T ~
Actual 80 50 20 100 1.0 150 11.0 o
. Initialld) 30 20 40 60 20 80 9.0 N
C X NP0 64 48 25 66 21 130 0010 11.0 v
- NPO1 6.1 46 30 7.5 21 11.0 180 11.2 o
NP02 6.2 48 27 63 1.8 150 29.0 10.7 %
NPO3 6.5 49 24 6.8 2.1 130 16.0 11.0 <
NPO4 6.6 5.0 2.5 72 18 13.0 6.0 10.9 “
NPO05 48 4.2 3.5 7.0 2.1 120 13.0 10.4 -
NPO06 6.1 4.7 2.5 70 19 130 120 10.5 '
NPO7 64 4.8 3.0 70 18 130 9.7 11.2 -
NPO8 6.0 49 25 73 1.8 130 17.0 1G.3
NPO9 6.2 50 3.1 7.0 1.4 13.0 15.0 10.7 N
NP10 6.1 4.7 2.6 69 2.0 13.0 18.0 10.7
a. Convergence criteria: X< 0.01 or less than a 0.1% change in X? for succes- ;
sive iterations -
b. BF represents basis function -_::
c. TF stands for the total fluence from 0.0 to oo ::'
d. Same initial spectrum for all cases, results represent unfolded spectrum f.:j-
"
e
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A TABLE VII
l Noise Study for Cubic Spline o
- _ Basis Function with Variable Knots (a,‘bi) .
: Case Parameters 'y NG
’ Knots Coeflicient NG
> Actual 5.0 100 4.0 5.0 3.0 10.0 ~
o 250 500 1.6 1.0
' lnput(c) 20 150 30 20 50 5.0
: 35.0 60.0 10 20
i NCO 4.4 11.0 4.0 4.9 2.7 9.7 0.020
. 270 600 1.8 068
: NCo1 3.8 12.0 3.1 53 2.2 8.5 11.0
30.0 60.0 1.8 0.66
NCO02 13.0 18.0 5.3 1.4 2.0 11.0 17.0
35.0 81.0 1.1 0.57
NC03 5.7 8.7 3.5 4.8 3.8 7.5 8.6
42.0 68.0 1.4 0.55
NC04 3.5 9.7 3.1 4.5 2.8 9.6 5.5
33.0 60.0 1.7 0.62
NCO05 3.1 14.0 42 53 0.92 7.3 9.4
19.0 68.0 1.8 0.49
NCO08 3.8 10.0 3.1 5.0 2.9 10.0 8.8
33.0 60.0 1.4 0.61
NCO7 5.7 10.0 4.1 5.0 3.2 13.0 7.2
33.0 60.0 1.9 0.39
NCO8 3.2 9.7 28 4.5 23 10.0 15.0
31.0 60.0 1.6 0.58
NC09 5.2 14.0 1.0 1.3 2.0 11.0 13.0
35.0 56.0 1.8 0.51
NCl10 3.4 9.4 36 48 3.0 10.0 18.0
32.0 60.0 1.5 0.66
a. Convergence criteria: y?< 0.01 or less than 0.1°C change in \° for successive
iterations
b. Fixed knots at 0.0,1.0.128.0 are implicit in definition of these splines and are
not listed

c. Same initial spectrum for all cases, results represent the unfolded spectrum

The resuits of the preliminary study concerning simulated measurement error
show that measurement error in the measured signals has little effect on the
unfolded spectrum. In all but one case, the final \? was less than the number of
instruments used, 20. The relation between the locations or amounts of measure-
ment error and \? was not determined in this study. However, this could be con-
sidered in a future study. In addition to this result, the simulated measurement
error study on the planckian basis functions showed that the tempernt ires pro-

duced in the nunfolded spectrum should not be considered the actual black body
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temperatures, for multi-temperature spectra. However since only one spectrum
was considered a more detailed study should be conducted. This is shown by the
temperatures arrived at for the unfolded spectrum during the simulated measure-
ment error study. Also, since the planckians were normalized. the sum of the
coefficients approximates the total fluence for the spectru m. It should be noted
that the total luence is accurate to about 59% in the planckian cases tested. The
measured-to-predicted ratios are accurate to 15 but some of the ratios are too
large while some are too small so the total fluence error is less or the accuracy is

better for the total luence measurement.

[t should also be noted that the values for x* were smaller for the cubic
spline basis functions than for the planckian basis functions. Because the cubic
splines are local functions, the splines can fit the detail of the spectrum better

than the global functions like the planckians. Thus, the 2 should be lower.

Applicability of the Basis Functions Study. During the unfolding of

real data, the actual spectrum is not known so one can not select the set of basis

functions that were used to construct the actual spectrum. This study was used
to determine how well a set of basis functions could approximate an actual spec-
trum constructed from a different set of basis functions. Two actual spectra were
approximated using an ideal situation in which simulated measurement error was A
not added to the measured to predicted ratios. Also in both cases the non-

negativity constraint was applied. The first was an actual spectrum constructed

from three planckian basis functions. This spectrum was then approximated
using cubic spline basis functions with six, seven, and eight knots. The results of o

this study are presented in Table VIII and the best approximation to the actual

e
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spectrum is presented in Figures 7 and 8. All plots of the actual and unfolded

Sl ataalalm

»
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spectra are presented in Appendix F.
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it TABLE VIl
- Results of Fitting a Planckian Spectrum
ol with Cubic Spline Basis
. Functions with Variable Knots (a,b,c)
-f-‘;'_ Case Parameters x’
R BF1(d) BF2 BF3
R Actual 40 50 3.0 100 7.0 150
Knots Coeflicients T
N2 PCl1 Initial 20 150 0.30 0.50 0.60 8.0
r. 35.0 0.20
Unfolded 2.3 39 -0.28 -4.8 0.17 120 71.0
30.0 0.22
PC2 Initial 2.0 15.0 0.30 0.50 0.30 8.0
35.0 50.0 0.20 0.10
Unfolded 1.0 120 -043 -3.5 11.0 380
34.0 49.0 0.12 -0.23 0.29
PC3 Initial 2.0 10.0 0.30 0.40 0.50 8.0
150 35.0 0.30 0.20 0.10
50.0
Unfolded 1.8 2.2 0.097 -0.38  -0.22 12.0 16.0
59 260 0.031 0.19 0.18
49.0
a. o, =0.15

b. Convergence criteria: < 0.0l or less than 0.1S5 change in \* for successive
S iterations

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines and are
not listed

d. BF stands for basis function

This portion of the study demonstrates the strengths and weaknesses of the
system very well. The results show how well the computer program can fit the

tail of the planckian spectrum. This is due to the fact the fit between the last

two knots in the cubic spline is defined as a planckian distribution. Secondly, the
results demonstrate how the selection and quantity of knots effects the unfolded

spectrum (i.e. the use of six or seven knots is not acceptable but the use of eight

P
¥
N

knots is acceptable.).

~
~ wa

Finally, case PC3 depicts the artifacts that can be added to the unfolded

spectrum as a result of the unfolding. This case is plotted in Figures 7 and 8.

y 2 N :“\".-\

RIS

The final point to note is the negative coefficients. These negative coefficients are
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_,QE acceptable since the non-negativity constraint was imposed. This demonstrates :
the fact the computer treats the basis functions as merely mathematical functions \2

and tries to add or subtract them as required. :‘,‘

s

The second "actual” spcetrum studied was composed of cubic spline basis ;:
functions using seven kp.»:s. 'Che spectrum was approximated using one, two, and /i
three planckian basis functions for the unfolded spectrum. The results of the :
study are presented in Table [X and the best approximation to the actual spec- !‘I

trum is depicted by Figures 9 and 10. All plots of actual and unfolded spectra \S.:

verses energy are presented in Appendix F. E;

The results of this study indicate that as the number of planckian basis funec- .

tions is increased, the value for x? is reduced. From the results, there appears to ’
L be an optimum number of knots that should be used to fit a given spectrum. \
t ﬁ However as seen from cases CP3 and CP4, the addition of another basis function l\

may not improve the approximation of the actual spectrum. Also note the nega-

tive temperatures which have no physical meaning. However, the computer code

is once again treating the basis functions strictly as mathematical functions and in .
this case the overall function may be negative. In order to require a positive tem- E
perature, a simple restraint on the temperatures in the computer code could be _'
inserted, although this would result in a poorer agreement with the measurements. . A
Yy

Figure of Merit \
i
In order to evaluate how well the actual spectrum was approximated by the :t'.:‘:j
unfolded spectrum, a study of eight figures of merit was conducted. This study is !i
presented in Appendix G. The goal of the study was to determine a figure of :
merit that correlated with 2. Thus, an experimenter would have a reasonable :::::j
idea of the goodeness of fit for the unfolded spectrum. However, the eight figures -!Tj-l:
of merit studied do not appear to correlate well with x2. The main reason for the \
figures of merit not correlating with 2 was the calculation of the functions. x? A‘::::
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N TABLE IX
Results of Fitting A Cubic Spline Spectrum

p With Planckian Basis Functions (a,b)
I~ Case Parameters
o Knots Coefficients T
o Actual(c) 5.0 100 250 500 40 50 3.0 1.8 1.0 10.0
S BF1(d) BF2 BF3 Bf4
H a T a T a T a T
. CP1 Initial 30 20
Aoy Unfolded 67.0 2.5 380.0
WY CP2 Initial 30 20 40 60
Unfolded 430 18 76.0 0.9 20.0
T~ CP3 Initial 3.0 2.0 4.0 6.0 2.0 8.0

Unfolded 39.0 1.5 400 7.0 3%.0 120 17.0

CP4 Initial 3.0 2.0 40 6.0 2.0 8.0 1.0 3.0
Unfolded 36.0 -1.3 400 7.0 400 120 380 1.4 17.0
a. o; =0.15
b. Convergence criteria: X?< 0.01 or less than 0.1% change in x? for successive
iterations

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of this spline and are
not listed BF stands for basis function

was calculated based on the difference of the signals and thus was weighted more
’I \o heavily at the low energies while the figures of merit were based on spectral values
: and received equal weight since the energy bins were equal. Thus, a good ¥?
would not correspond to a good figure of merit because a small difference in the
ratios for the last detector would cause a large error in the figure of merits since

the error would be spread over energies from 64E,° to 128E,°.
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V1. Summary and Conclusions

-{'n"‘
1

Summary

Validation Cases. The purpose of the validation cases was to ensure each
element of the computer code was functioning properly and to note any flaws.
The three validation cases presented do exactly that. The benchmark cases for
the planckians and the cubic spline basis function with fixed knots demonstrate
the power of this unfolding technique. These cases show how well an actual spec-
trum can be approximated if the type of basis function used to construct the
unfolded spectrum is the best possible basis function and no measurement error,
either real or simulated, is present. In other words, if an optimum basis function

can be determined. the computer program is outstanding.

The cubic spline validation cases also demonstrate the dependence of the
unfolded spectrum on the initial guess at the knot locations. Even with a poor
\e. choice for the initial knot locations, the method will attempt to unfold the actual
spectrum. However, in general the variations in the knots will be so small as to
require an unacceptable amount of computer time before the actual spectrum is
unfolded. Thus, it is recommended that the predicted spectrum be used to deter-
mine the optimum knots for the initial guess at the unfolded spectrum. However,

this does not guarantee the best unfold with the real data so the unfold may have

to be repeated using different of knot locations

Test Cases. The test cases demonstrated that error in the measured <ig-
nals (simulated measurement error in the §,'s in this study) prevent the "exact"

actual spectrum from being unfolded. However, the general shape of the actual

spectrum was unfolded in all cases. The test cases also demonstrated the artifacts .

a2

introduced in the unfolded spectrum when attempting to approximate an actual
spectrum that is not composed of the same set of basis functions as the unfolded

spectrum. Thus, an experimenter can not unfold the actual spectrum but only an

.
.
b e
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order to achieve a reasonable unfold; and to optimize the number of

approximation to the actual spectrum and this unfolded spectrum will vary
depending on the error in the data and the type of basis functions used. However,

the general shape of the actual spectrum is returned

Conclusions

The results obtained from the test cases and validation cases demonstrated

the following conclusions.

1. The final convergence and the rate of convergence of the unfold using
cubic splines is dependent on the knot locations.
2. The cubic spline basis functions or local basis functions yielded a lower
¢ than the planckian or global basis functions did when used to unfold
data with simulated measurement error.
3. The total fluence of the spectrum is more accurate than the spectrum.
4. The shape of the spectrum is definable but the exact spectrum can not
be unfolded.
5. The temperatures in the multi-temperature planckians do not represent
the actual temperatures of the planckians.
6. The type of basis functions used will have a direct affect on the details
one can unfold and on the artifacts added to the unfold spectra. 4
In addition, the validation cases and test cases studied demonstrate the use- {
fulness of this data analysis method. The data analysis method be used in the ‘
following ways. :’.
1. During the experimental planning phase, the computer program could be :}‘
o
used to determine the best detector locations and response functions in E:

detectors or channels in order to confirm the predicted spectrum or to

determine variations from the predicted spectrum.
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;\ ~ 2.  After the ideal detector locations are selected and the response functions
Id

are determined, the computer program can be used to evaluate the affect

R,
e
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. .

of various basis functions on the unfold and the affect of measurement

1"‘

error on the unfold.
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The computer program can then be used to unfold the real data.

4. Finally, an analysis of the propagation of erro. can be conducted using
the computer program in order to get uncertainty bounds for the

unfolded spectrum and to determine the limitations of the unfold.

In order to convert Decon7.f to handle actual data as discussed above, four
read statements would have to be inserted. These read statement would read the
response functions, the predicted signals, the measured-to-predicted ratios, and the
standard deviations of the measured-to predicted ratios. Thus, the computer code
is capable of simulating test procedures or with three simple modifications, pro-

cessing actual data.
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SRS VII. Recommendations
‘-"f' \-. -.
! Recommendations
<
2 The following recommendations are made for continued study in this area.
e
:.( First, the simulated measurement error study should be continued in order to
N
- determine if the simulated measurement error has a more dramatic effect on any
(o
- particular detector or detectors. In addition, this study could consider the possi-
2
E-;»'.l bility of one or more detectors failing and see how this failure effects the unfolded
spectrum.
Secondly, the study should be continued to see how well the planckian and
cubic spline basis functions can approximate other spectra. This study could also
be used to determine if the artifacts produced correspond to the k-edges or energy
ranges of certain detectors.
. The third area of study could be a more detailed study of the relation of ?
\o to a given figure of merit. This study could be conducted in conjunction with a
study to determine the error or uncertainty in the unfolded spectrum. This error
analysis should include the methodology used in the deconvolution process as well
as the error established in measuring the actual spectrum.
The fourth area that could be studied is the effect on the unfolded spectrum
of varying the number of detectors used and/or their locations. These effects
could be studied using various basis functions. Formulation, implementation, and
. evaluation of new and varied types of basis functions is a fifth area for future
! work. 1
1
Finally, a study could be conducted to determine how well the deconvolution b
..l
process can resolve specific details in the actual spectrum. By selecting an actual .
spectrum and then adding a known function and varying its amplitude and '
3
CORAS width, a test procedure could be constructed to evaluate the resolving power of y
o the deconvolution method. y
.\
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Appendix A: Derivation of the Response Functions

MR AaS Gnt e vt Sug Sl

Before the methodology used to develop the program could be implemented,

typical response functions for the detectors had to be derived. In detecting pulsed

x-ray radiation, a common technique uses a filter-fluorescer detection system. In

principle, this system uses the k-edges of the filter and fluorescer to determine the

inband response of the detector. This type of detection system was selected for

the closed response function detectors. The open response function detectors used

the same system without the filter.

The equation used to derive these response functions is (15)(4:244):

S (EO)dQUE = J(E£)7¢(E )wy ifg' %J coid)
Z”/'Ei .;T(IE—) ][l—exp(—N;(E)d)]

_ /J(E)+ Hy

cos¢  cos(m—0)

where

J(E£.0) = the intensity of the K series excited by
radiation having an energy ranging from E to
E+dE
dfl = a solid angle

7t (E') = the coeflicient of photoabsorption on the k

shell
~¢ = the fluorescent yield
IV, = the probability ofthe appearance of the
fluorescence quantum having an energy £,
d = the foil thickness

jt( ) = reduction coefficient of the exciting
radiation ( considered mass attenuation

coefficient )
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#,(E) = reduction coefficient of the ith fluorescence
line ( also considered mass attenuation

coefficient )
For the purpose of this study, Equation (15) was simplified as follows. First
it was assumed that the experiment was arranged to consider only one angle and

that this minimized u,(cos(m—6)). Also note that in the vicinity of the k-edge,

{(E ) is much greater than y;. Thus, u,;(E) can be approximated by ﬁ% The
cos

second simplification was that only one fluorescence energy was studied. Thus,

Equation (15) can be simplified to:
J(E) = (const)((E) | - || [1—explis ()4 (1)
HE)
cos

. . . 1
Next, 7 is proportional to

@ (hP)P

k-edge of a material 7is proportional to p. This can be used to show u (E) is

or # (1:Section 1.8, page 2) and near the

proportional to [%] where E® is the energy of the k-edge. Thus Equation (18)
L

| -0 P
[l—-«.\p —g[%l E (17)

g = some constant

becones:

1

JEE = const =

where

The open response function of the detector can then be given by Fquation

1=y (§1:215).

R(E) =e(d) ], (F) (18)
where
S t(d) = the efficiency of the detector. ( assumed
i constant with energy )
Thus
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1

o(Ey= | L | 2
R°(E) = £ 1—exp [—g¢ 5 (19)

The constant and ¢(d) have been dropped due to the normalization of the
predicted signal and the subsequent modification of the response function. Also
note that the energy must be greater than the k-edge of the fluorescer in order for
the fluorescence to occur.

The addition of a filter to this open response function detector only serves to

attenuate the arriving radiation. Thus Equation (19) becomes:

L l—exp [—n E—O exp |—m EO—
E E E

, E°<E <E!
i l—exp |—n = exp {—mr z

where

n = constant

m = constant

r = ratio of mass attenuation coefficient values at
k—edge

E' = k—edge of filter
By conducting a study of mass attenuation coefficients, r was determined to
range from 4 to 12. For this study a value of 6 was selected. Secondly, a resolv-
ity power of about 1.5 could be achieved if the £! is twice the value of E° for the
detection system. This also established the limits for the inband response func-

Lions.

Finally, a parameter study was conducted to ensure at least 705 of the sig-
nal would be inband and that this signal would still be strong enough to be
detectable over the other noise, such as scattered radiation, in the detection sys-
tem. Based on the parameter study, the value of the constants was selected as

follows: ¢ =3.0; n =2.0. With a valueof 2.0 for n, and E! = 2E° m =0.25
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.. 1/8 of n. With these values the open and closed inband response is 80%% and

78% respectively and the total response is acceptable.
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Appendix B: Derivation of the Cubic Spline
Basis Functions

The cubic splines used in this study were four point Lagrangian interpolating
splines and not the common B-spline. These cubic spline basis functions were a
combination of four cubic splines. Also, a linear functions or a planckian function
were required in certain segments of the spectrum. The lagrangian interpolating
splines were a function of the knot locations chosen to construct the splines and
the spectral intensity at these knots. In this study, the intensity was referred to
as the expansion coefficient for the spline formed using that knot. The study
required three fixed knots.The first knot is equal to 0.0; the second knot is equal
to £ and the last knot is equal to 128.0*E . Also, 2 minimum of six knots is

required before a full cubic section is defined by the basis functions.

The number of basis functions is equal to the total number of knots minus
one. Each knot location except the first and last knot location is used to define a
specific basis function. Additionally, the next to last knot's spectral value is used
to define two basis functions. This appendix will present the methodology used to

develop the various basis functions.

The primary function used to define the basis function was the cubic spline

function given by Equation (21)(2:85).
S Yy Lq

; B 1 (E—knot,) a)
elE) = .I}) (knot, —knot, ) =
1wk

where

L = vnergy
knot, = primary knot

knot, = other knots in the function

In this study, four functions, L (£ )'s. were used to Jdefine the basis function

for the primary knot locations. This basis function covered a range from the
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energy of two knots to the left of the primary knot location up to two knots to

the right of the primary knot. In other words if the given knot is knot(x), the

tion of a cubic spline basis function using the four L, (£) 's described by Equa-

tion (21) and expanded in Equations (22) to (25).

(z—z1)(z—=22)(1~23)
(z4=z1)(z4—2
(

2<z<z3
(r4—z3) TSI

(z—22)z—23)(z~z5)

energy range covered from knot(x-2) to knot(x+2). Figure 11 depicts the forma- %

2)
2) = ( 13z <z
2= (z4—z2)(z4—22)(x4-25) 3z <ad
(z—z31)z—z5)(z—z6) .
I8) = \wizza)za=zs)zizey | Z'1SF<%° i
[(4) = (z—z5)(z—z6 ))(I‘-II) 15<z <16 ,

- l(:r«l —15)(z4—126)(z4—17)
The solid line portions of each of the four L, functions depicted in Figure

11{a to d) are added to form the final cubic basis function depicted in Figure 11e.

M-’-_A

A cubic spline basis function is formed in the same manner for each knot Jocation

unless the function is modified as discussed below.

Three modifications were made to these cubic functions. First, the detectors

el Ll fdh

are unable to detect energy below EQ or above 128*E 2. Thus, these values were
not computed in the basis functions used to define the unfolded spectrum.
Secondly, four complete cubics can not be evaluated between the next to last knot
and the last knot. Thus, a planckian fit, as given by Equation (6). was used in
this section. Also, four complete cubics could not be calculated from knot two to

knot three or after the planckian modification, from two knots from the end to

As Poa 2 e e A

one knot before the end. In order to allow all other sections to be fit as cubics

LY, §

and to correct these two sections, a linear fit was used.
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AT In order to visualize these modifications, Figure 12 depicts the five basis func-
iy
N
e

tions used for the case consisting of six knots. The basis functions cover the fol-
lowing knot locations: basis function 1, 1.0 to 50.0; basis function 2, 1.0 to 50.0;
basis function 3, 10.0 to 80.0; basis function4, 10.0 to 80.0; and basis function 5,
80.0 to 128.0. Note the error in the functions at knot5. This is due to the step

size used to produce the figure. By using a smaller step size to calculate the basis

functions, a smooth set of basis functions can be produced at this last knot.

Table X presents the basis functions used and the knots and type of func-

tions used to define the basis functions.
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Figure 12 Cubic Basis Functions for the Case Using
68 Knots
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TABLE X
Knots and Functions Used to Define the
Cubic Spline Basis Functions(a,b)

Basis Prima Energy Knots Type
Function Knot(g Range(d) Used Function
1 2 2-3 2,3 linear

3-4 2,3,4,5 cubie
2 3 2-3 2,3 linear
34 2,3.4.5 cubic
4-5 3,4,5,8 cubic
3 4 3-4 2,3,4,5 cubic
4-5 3,4,5,6 cubic
5-6 4,5,6,7 cubic
4(e) 5 3-4 2,3,4,5 cubic
4-5 3,4,5,6 cubic
5-6 4,5,6,7 cubic
6-7 5,6,7,8 cubic
N-3 N-2 N-2)}(N-1 -3,N-2,N-1,N cubic
N-3)-(N-2 N-4,N-3,N-2,N-1  cubic
N-4)}(N-3 N-5,N-4,N-3,N-2  cubic
N-2 N-1 N-1}N N-1,N linear
N-2)}(N-1 N-3,N-2,N-1,N cubic
N-3)-(N-2 N-4,N-3,N-2)N-1  cubic
N-1 N N-1}-N N-1.N linear
N-2}(N-1)  N-3,N-2,N-1,N cubic
N N N-N+1 N-1 planckian

N equals the number knots minus 1

If less than eight knots are used, the basis functions must be modified to en-
sure only a linear fit is used between knots 2 and 3 and knots N and N-1.

Primary knot value is equal to one in all cases. All other knots are equal to
zero. Basis function is then expanded using the expansion coeflicient for the
primary knot.

Energy Range is considered as energies from knot to kuot

Also used for basis functions 5 to N-4 with primary knot equal to basis func-
tion plus one.
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Appendix C: Computer Program Documentation

Prose

Decon?.F is a fortran 77 computer program that is written off the UNIX

LA
. .
‘- ll 'n - '-'.

ELXSI BSD (4.2) operating system. The computer program is currently available

3

on the ICC computer system at the Air Force Institute of Technology. Decon7.{

is a computer program that can be used to approximate the actual radiation spec-

- .l 'l .l .) _'\

trum in the Fredholm integral equation. Decon7.f can also test various types of

- O

basis functions for defining the unfolded spectrum. With minor modification, the

response functions or number of detectors utilized in the unfolded process can also

S8R 9
A

by
l‘{_ 7,

7

be changed. This allows the program to be used to study the effect of the detec-

L

tors and the type of response function on the unfolding process. The methodology

"rh & S

4§ &
3 BV R

P
o

used to develop this program is discussed in detail in Section III.

.y
%)

The program is based on three main assumptions. First, the energy range

considered is from E? to 128E 0. Secondly if the actual and predicted are defined

by the computer program vice being input, the program assumes the calibrated
and actual response functions are equal. Finally, decon7.f assumes 20 detectors

are utilized to measure the spectra.

Currently, the program is limited to planckian and cubic spline basis func-
tions for defining the unfolded spectrum. However, a new basis function subrou-
tine can easily be inserted for defining the unfolded spectrum. Also, since the
function is non-linear, the possibility exists for the computer program to begin to
loop between certain values of x2. This could be corrected by either adding a
maximum number of iterations allowed or by stopping the computer program and

then restarting the program with a higher convergence criteria for \2.

Decon7.f is run by compiling and then executing the source code. Decon? will

then prompt the user for all input required and list all options available.
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¥
Pseudo Code for Main Program :_':::J’
;":"n :‘:.'-
\\A\ 0 .'.--f
t . N
Input e; o
\II
Input energy bin width for calculating integrals. -
NN
N
Define E,° and E,! for all detectors with respect to ED. ::’-:
A
Calculate response functions using Equations (3) and (4). 9,,
e
h',--
Input type of predicted spectrum to be used. (planckian, cubic or other.) ::
N
If planckian, then N
.v,,.
Input number of basis functions N
Ay
Input coeflicient and temp. for each basis function C::
\H
W
Calculate predicted spectrum by calling bbfunc >
End if =
._\l
-
If cubic then N
g 1"-':‘
@ Input the number of knots .
Input knot locations .j:::-_:
Input expansion coeflicients N
®
®
Input the planckian temperature e
N
Calculate predicted spectrum by calling csfunc :
: SN
1 End if »
e
If other then “‘j'.:
K
Read predicted spectrum from input file '_‘_-\::j
S
D
4 End if > .
:1
Calculate YP? using Equation (8) f_-:'.:f
T
Divide R,(E£) by Y[ to normalize }? A
' L4
C-2
IR *-“
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Define the actual spectrum (use the same method as defining the predicted

Ko method).
Calculate b; using Equation (10) ‘
Input o; for all detectors
Option to add normal noise distribution to b,. (Input 1 for ves)
If yes then
Input seed number for random number generator
Calculate Z; using Equation (14).
Add Z;to b,
End if ‘
Option for flux non-negativity constraint (Input 1 for yes) ;
Input type of basis function to define the unfolded spectrum (planckian or f
lO cubic) |

If planckian then
Input the number of basis functions
Input the coefficient and temperature for each basis function

End if

If cubic then )
Input the number of knots
Input the knot locations
Input the expansion coeflicients

Input the planckian temperature

End if

Initialize the H matrix for the Fletcher-Powell method to the identity matrix.
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Input the initial guess at the functional lower bound
Calculate the unfolded spectrum by calling bbfunc or csfune
Calculate ¢; using Equation (11)
Calculate ¥* using Equation (12)
While x> convergence criteria

Call minimize

Recalculate *

. . . o)
Print iteration #, x~, and parameters to screen

End while
If \*< convergence criteria

Write actual and unfolded spectrum into an output file
End if

End of main program

Pseudo Code for Subroutine bbfunc
Calculate spectrum using equation (6) and apply flux non-negativity options
if applicable

2eturn spectrum values to calling module.

Pseudo Code for Subroutine csfunc

Calculate spectrum using cubic splines in Appendix B and apply flux non-

negativity option if applicable.

Return spectrum values to calling module. flux
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Pseudo Code for Subroutine minimize ( 5:75-76)

N,
o
' For p=1 to np
Call gradient ¢,
Calculate gradient of x*
Next p
Multiply gradient matrix by H matrix to find search direction
Normalize search direction to find unit search direction
Call subroutine linesearch
Reset H matrix to identity matrix if slope of x*> 0.0 and recalculate search
direction.
“ Calculate new parameters for unfolded spectra
\',' Calculate new H matrix
{ te Call Lbfunc or esfunc to calculate new spectrum based on new parameters
Calculate pe, for new parameters using equation (11)
Let pc, =¢,
Return new parameter and ¢, to main program, .
R
R
Pseudo Code for Subroutine linesearch ( 5:77-80) 4
Calculate functional value (ho) and slope (mo) with given parameters 1
b
If slope > 0.0 ;
Return and reset Il matrix )
- End if .
% i
Calculate t2 p
L g
. . . A
Calculate functional value (h2) and slope (m2) using parameter + t2 * unit
-.I: v
N search direction. ‘S
~° 0 ) 3
\:;- -
- j
e >
C-5
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If m2 > 0.0

Use the two slopes and functional values previously calculated to fit a

cubic and determine the line search distance

End if
If m2 < 0.0 and h2 > hO

Cut the search interval in hall and recalculate m2, h2

End if
If m2 = 0.0 and h2 < hO

Line search distance equals t2.

Endif

I m?2 < 0.0 and b2 < L0

Double search distance and let m0 = m?2, h0 = h2, 10 =

lecaleulate m2 and h2
End if
If 2 = 0.0 and h0 = h2 (modification to reference)

Line search distance equals to

Foodif

eturn line search distance to minimize subroutine

Pseudo Code for Subroutine calcfunc

Culeulate new parameters

(tparameter = parameter + t* unit search direction)

Call bbfunc or =func to determine spectrum valiues

Calculate ¢, based on new parameters using equation (11)

Calculate ¥? using equation (12).
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:
Forp = 1,0p
T Call gradient ¢,
Calculate gradient of x*
Next p
Forp=1.np
slope = slope + gradient x* * unit search direction
Next p
Return slope and function value, ¥°, to linesearch  subroutine
Pseudo code for Subroutine gradientc
Let parameter = parameter + delta* parameter with respect to the given
parameter
Call bbfunc or <sfune to determine new spectrum values
2 ':‘ Calculate new ¢', let it equal f, using equation (11)

Calenlute gradient ¢, using ¢, and f,

Return the value for the gradient of ¢

Source Code for Decon7.f

See Appendix D

List of Variables used in the Source Code

See tab 1 to this appendix

Inputs

Inputs required for Decon 7.1 are listed in Table XI.
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TABLE XI
List of Input Variables

Var. Definition

El0 k-edge of fluorescor for 1st detector

Y energy bin width for calculating integrals

type* type of basis function used to define predicted
spectrum

dum1l* # of planckian basis functions; number of knots
for cubic; or stop feature for reading input
file

pparam(j)* coefficient and temperatures for planckian
basis function; or knots, expansion
coefficients and temperature for cubic

duml toggle for simulated measurement error

dum?2 seed for random number generator

non toggle for non-negativity option

type type of basis function used to define the
unfolded spectrum

o, standard deviation for b,

nj number of planckian basis functions

nkn number of knots for cubic basis function

param(j) coefficients and temperatures for each
planckian basis function or knots,
expansion coefficient and temperature for
cubic basis function

1 initial guess at the functional lower bound.

* also required for the actual spectrum

Outputs

. ~o a
The cutput occurs in two forms. First, the values for \* and all paranicters

are printed to the computer screen during each iteration as are the final parame

ters. Secondly, the actual spectrum and unfolded spectrum values at each energy

location are printed into an output file labeled output.

File Structure

The program uses one output file and can use two input files. In order to
run the program both input files must be defined. However, the two input files
may be empty if they are not required to define the actual or predicted spectrum.

The file structure for the output file is a two column table with energy and inten-

sity at that specific energy. The first half of the file contains the actuual spectrum.

These energies begin with the maximum energy 1258E 0 - and decrease in steps
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of the bin width (y) to a value of El°+%. The second half of the file consists of

the unfolded spectrum and begins with energy E,O+—g— and increases in steps of y

-

to the maximum energy. The file structure for both input files consist of a single

Y
‘)

-

column of energy intensities for energies from E? += to the maximum energy in

steps of v, the bin width.

Validation Cases

See Sections V and V.

Test Cases

See Nections Voand VL
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Tab 1: List of Variables (a)

Variable
in code
a

aknotl
aknotl
aknot1d

aparam(j)
b(i)

c(1)

ofi)

chi2
coef(p)
const
const

d(i)
delta

dum

duml

duml
duml.dum?
dum3
dummy

e

eo(l)

el{1)

fip)

gip)
grrimelp)
grade
grade(p)
grade i
grehi2ipg
grehiig)
h

ho

hit

h?2

i
it

J

k

ke
kn(p)
kn(15)
knotl

knot?2

Svmbol
in Text

Definition

dummy matrix used to calculate H
knot 0.0 for actual spectrum

knot Eo(1) for actual spectrum
knot 128E0(1) for actual spectrum
jth parameter for actual spectrum
measured-to-predicted ratio
unfolded-to-predicted ratio

c(i) for appropriate spectrum

chi squared

expansion coeflicient knot p-1
expansion coeflicient for planckian
dummy variable for summing
random numbers

integral of Ri(E) Sp(E) dE

step size to calculate gradient
dummy variable

dummy variable

dummy variable

dummy variables

9% change inx?

dummy variable

energy counter

k-edge of fluorescer for

ith detector

k-edge of fifter for ith detector

c(1) for newpar&p)
gradient of \* for old parameters
gradient x° for new parameters

gradient of ¢(i) for appropriate spectrum
gradient cfi) with respect to parameter p

gradient of te(p)
gradient of \~ for tparam

gradient \* with respect to parameter p

correction matrix H

functional value at (Param+to®s)
dummy functional value variable
functional value at (Param+1t2*s)
counter

iteration counter

counter

counter

planckian conversion

constant (temp. to energyv)

knot number p

dummy variable for knot location
knot 0.0, unfolded spectrum

knot Eo(1), unfolded
spectrurn
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- Variable Symbol  Definition Modules(b) o
N in code in Text NS
- knot15 - knot 128E0(1), unfolded 1,3,4, ,".
spectrum 5,6,7 AT
1 - functional lower bound 1,4,5 o
m - dummy slope variable , "
mo - slope at sparam + to*s) 5 e
mu - variable for cubic fit 5 o
m2 - slope at (param + t2*s) 5 ,
newpar(p) - param(p) + (delta)*(param(p)) 7 >
ni - number of detectors 14,5, o
)7 -
nj - number of planckian basis functions 1,24, o
nk - number of energies 1,2,3, -
4,5,6, y
nkn - number of knots unfolded 1,3,4, v,
spectrum 5,6,7 o
np - number of parameters 14,5, ::j
W ‘.'._
non - toggle for flux non-negativity 1,2,3 2
option 4.5.6,7 y
norms - norm of sprime 4
num - dummy variable 3
o - counter 1.4 -
p -- counter 14,67 b
_ param(]) - jth parameter for unfolded 1,2,3, N
i ‘ spectrum 4,5,6.7 ’
; pefi) - c(i) for new parameters 4
pi m pi 1.2.3, -
4.5.6.7 e
pknotl -- knot 0.0 for predicted spectrum 1 K
pknot2 - knot Eo(1) for predicted spectrum 1 S
pknot15 - knot 128E0o(1) for predicted spectrum 1 .
planck - planckian distribution 3 S
pparam(] - jth parameters for predicated spectrum l it
pprime(p - new parameter 4 It
q -- dummy matrix used to calculate H 4 ~
r(i.k) R, (E)  response function of ith 1.4.5, -
detector kth energy 6,7 y
rand - random number generator 1 o
reset -- reset counter for H matrix 4.5 '_'.-f".-
s(p) - unit normal search 4.5,6 .;f-lz
direction for parameter p o
sa(k) S, (FE) actual spectrum kth energy 1 T
sig - dummy input for o; 1 -
sigma(i) o; standard deviation in b, 1.4.5.6 o
slope - slope for linear fit 3 i
sp(k) S,(E)  predicted spectrum kth energy 1 ‘_:-j:j
sprime(p) - search direction for parameter p 4 2]
srand - initializes random number generator 1 ':,'_-:]
sulk) S, (E) unfolded spectrum kth energy 1.2,3 )
~1utk) - dummy variable unfolded spectrum 4 Yy
<tk - unfolded spectrum for tparamép; 6 -4
-k — unfolded spectrum for newpar(p 7 g
A
oL
)
C-1-2 R
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Variable Symbol  Definition Modules(b)

in code in Text

sumi - dummy variable 4

sum) - dummy variable 4

sumk -- dummy variable 4

sumo - dummy variable 4

sump - dummy variable 4

sumran - sum of random numbers 1

t - temperature of planckian 3

t -- step size in search direction 4,5.6

te(p) -- c(i) for tparam(p) 6

to - step size used to determine ho,mo 5

tparam(p) - parameter(p) +t*s 6

type - type of basis function 14,5,

t1 -- calculated step size 5

t2 -- step size used to determine h2,m2 5

v -- dummy matrix used to calculate H 4

w - variable for cubic fit 5

X - dummy variable 1,2,3

X - parameter transfer counter 7

v -- energy bin width 1.2.3.
4,5,6,7

z - dummy matrix used to calculate H 4

z - variable for cubic fit 5

a. If a parameter is listed once for several modules, the parameter is passed
.. between the modules. If the parameter is listed separately for each module,
- the parameter is only common to that module.
b. Module listing: 1, Main; 2, bbfunc; 3, csfune; 4, minimize; 5, linsearch; 6,
calcfunc; 7, gradientc

REAFAPNN

.
X oL

-—

T Tt I e P R N P BTSRRI
PRI RIS IS PP PR AR N T T N AT T T T
RO NS SAIA SN N N S G T e R R PR R AL L P P P TP L S AT I P A




WY X W

WY W R —

Y
r:n LN

nnnnNnnNnononnNnNn

0

10

15

Appendix D: Computer Program Source Code

THIS PROGRAM IS THE FINAL VERSION OF DECON. IT USBS
THE FLETCHER-POWELL, MBTHOD FOR MINIMIZING CHI2 WHILE
USING A CUBIC LINB SEARCH ROUTINE. ALL INPUTS ARE
REQUIRED TO BE INPUT FROM THE KEYBOARD. THR CUBIC
BASIS FUNCTIONS INCLUDE THE KNOTS AS PARAMETERS.
THIS PROGRAM USES NUMERRICAL DECONVOLUTION TO
APPROXIMATE AN ACTUAL RADIATION SPECTRUM WHEN GIVEN THE
MBEASURED SIGNAL, A PREDICTED SPECTRUM, AND RESPONSE
PUNCTION OF THE DETBCTOR(S). THE PROGRAM ASSUMBS
13 CLOSED RESPONSE DETECTORS AND 7 OPEN RESPONSE
DRTEBCTORS. THE PROGRAM USES AN ENERGY RANGE OF Bo(1l)
TO 128#Bo(1l)
real+8 pparam(30),pknotl,pknot2, pknotl5,aparam(30)
real#8 aknotl,aknot2,aknotl5
real+*8 chi2,eo0(20),e1(20),r(20,1280),e,pi,kc
real+8 sa(1280),3p(1280),4(20),b(20),sigma(20)
real+«8 sumran,sig,dum3,dumny,x,su(1280)
real«8 1l,param(30),c(20),y,h(30,30)
real*8 knotl,knot2,knotlS5,srand,rand,const
integer nkn,type,it,non,i,k,j,ni,nk,nj,duml,dum2,0,p,np
common eo(20)
open (unit=7,file='output’',status=‘new’)
open (unit=2,file='inputl*',status=‘old*)
open (unit=3,file='input2',status=‘old")
rewind (2)
rewind (3)
print «,'INPUT EBO(1)>*
read *,eo(1l)
NI=THE NUMBER OF INSTRUMENTS OR DETECTORS
NK=THE NUMBER OF ENERGY BINS USED FOR INTEGRATION
Y=THE WIDTH OF THE ENERGY BIN
ni=20
print «, °*INPUT THE DESIRED ENERGY BIN WIDTH, MINIMUM®
print «, °*BIN WIDTH IS 0.1°
read +*,y
nk=1int((128.0%eo0(1)-eo0(1))/y)
pi=3.1415
kc=1.0
DEFINE ALL BO'S WITH RESPECT TO BO(1)
do 5 1=2,7
eo(1)=2,0%e0(1i-1)
continue
e0(8)=]1.5%eo0(1l)
do 10 i=9,13
eo( i )=2%e0(1-1)
continue
do 15 1i=14,20
eo(1)=eo0(1-13)
continue
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DEFINE El(I)WITH RESPBCT TO BO(I)
do 20 i=1,ni
el(1)=2.0%eo0(1)
continue
DEFPINE ALL RESPONSE PUNCTIONS AT SPBCIFIRD EBNEBRGIES
do 30 i=1,ni
e=eo(1l)~y/72.0
do 25 k=1,nk
es=e+y
it (e.gt.eo(1)) then
if (1.1t.13)> then
it (e.lt.el(i)) then
r(i,k)=(1.0/e)*(1.0-exp(-2.0%(e0(1i)/e)n%3))
r(i,k)=r(i,k)*exp(-0.25%*(el(i)/e)*x3)
else
r(i,k)=(1.0/e)*(1.0-exp(-2.0*(eo(i)/e)ax3))
r(i,k)=r(i,k)rexp(-1l.5*(el(i)/e)*x3)
end {if
else
r(i,k)=(1.0/e)*(1.0-exp(~3.0%(eo(1)/e)wx3))
end 1if
else
r¢(i,k>)»=0.0
end if
continue
continue
DEFINE THE PREDICTED SPECTRUM
print +,°'INPUT THE TYPE OF FUNCTION TO BE USED TO MODEL
print «,*THE PREDICTED SPECTRUM'
print =,° 1=PLANCKIAN BLACK BODIES®
print =,° 2=CUBIC SPLINES"*
print «,° 3=0THER"
read «,type
if (type.eqg.l) then
print «,'INPUT THE NUMBER OF PLANCKIAN BASIS®
print +»,*FUNCTIONS TO USE®
print «,*(MUST BE AN INTBGER LBSS THAN 15)°*
read +,duml
print +,*'INPUT THE COEF. AND TEMP. FOR EACH BASIS®
print «,°'FUNCTION SEPERATED BY A COMMA (TEMP IS IN®
print «, ‘UNITS OF EBO(1))*
do 33 j=1,duml
print «,'BASIS FUNCTION NUMBER®', 3
read +,pparam(j),pparam( j+duml)
coOntinue
non=1.0
call bbfunc(pparam,sp,y,nk,duml,pi,kc,non)
end it
if (type.eq.2) then
print «,*'INPUT THE NUMBER OF KNOTS TO BE USED TO FIT®
print «,°'THE CUBIC SPLINES (MUST BR AN INTEGER®
print «,'6<=8KNOTS<=15) NOTE:0.0°
D.2
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print «,°'COMPUTED AS THE LAST KNOT. INCLUDE THESE®
print «, *KNOTS WHEN COUNTING YOUR KNOTS,AND ENSURE'
print «,'THEB KNOTS ARE INPUT FROM THE MINIMUM TO THR'
print «,* MAXIMUM.'®
read +«,duml
print «, *INPUT THE RKNOTS®*
pknotl=0.0
print =, *'RKNOT 1=',pknotl
pknot2=eo(1l)
print =, 'KNOT 2=',pknot2
do 37 3j=1,duml-3

print #,'input knot ',j+2

read +,pparam(j)

37 continue

pknotl5=128.0+eo0(1) /
print =, *KNOT',duml, '=',pknotl5 ‘
do 38 j=1,duml-2 '

if (J.ne.l) then

print +,*INPUT THE BXPANSION COEF. FOR®
print «,' KNOT=*,pparam( j-1)

print «,'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,"® ~
print #,°* TEMP IS IN UNITS OF Eo® K
read w,pparam(2+duml-4)
non=1.0
call csfunc{pparam,sp,duml,nk,y,non,pknotl,
* pknot2,pknotl5,eo,pl1,kc)
end 1f
it (type.eqg.3) then
print +,'Sp(B) WILL BE READ FROM FILE inputl, THB®
print «,'FILE SHOULD CONSIST OF SPECTRUM VALUES FROM®*
print #,°'(EBO(1)>+BIN WIDTH/2.0)"*
print »,*'TO 128.0+#BO(1) IN STEPS OF THE BIN WIDTH®
print «,*INPUT A 1 TO CONTINUE OR A 2 TO STOP®
read +,duml
if (duml.eq.2) then
go to 151
end 1t
e=@o(l)-y/2.0
do 44 k=1,nk
e=e+y .
read (2,%) sp(k) ‘
44 continue
end if ~
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A print «,*'IS COMPUTED AS THE FIRST KNOT, BO(1l) IS*
vy
1o print «,‘'COMPUTBD AS KNOT 2, AND 128.0+«B0(1) IS* 4

Iy else

- print «,'INPUT THE BXPANSION COEBF. FOR'

" print =,*' KNOT=',pknot2

R end 1if

,{ ‘4_‘1 read «,pparam(duml-3+j) .
M ' 38 continue .
: print «,°*INPUT THE TEMP. TO BE USED TO CONSTRUCT A‘ f
'

o



45

50
55

59

62

CALCULATE THE NORMALIZATION CONSTANT FOR D(I) AND
RENORMALIZE THE RESPONSE FUNCTIONS
do 55 i=1,ni
do 45 k=1,nk
A(1)=A(1)+s8p(k)I*r(i,k)ey
continue
do S0 k=1l,nk
r{i,k)=r(1,k)/7dc1)
continue
continue
DEFINE THE ACTUAL SPECTRUM
print «,*'INPUT THE TYPE OF PUNCTION TO BE USED TO'
print «,*MODBL THE ACTUAL SPECTRUM®

print =»,° 1=PLANCKIAN BLACK BODIRS'
print «+,° 2=CUBIC SPLINES'
print *,°* 3=0THER"

read »,type
it (type.eq.l) then
print +, *INPUT THE NUMBER OF PLANCKIAN BASIS®
print =, *FUNCTIONS TO USB®
print «,*'(MUST BB AN INTEGER LESS THAN 15)°
read «,duml
print «,*INPUT THE CORF. AND TEMP. FOR BACH BASIS*
print «,*PUNCTION SEPERATED BY A COMMA (TEMP IS IN'
print «,°*UNITS OF BO(1))*
do 59 j=1,duml
print =,*'BASIS FUNCTION NUMBER', ]
read *,aparam( Jj),aparam(j+duml)
continue
non=1.0
call bbfunc(aparam,sa,y,nk,duml,pi,kc,non)?
end it
1f (type.eq.2) then

print +,*'INPUT THE NUMBER OF KNOTS TO BE USED TO FIT®

print «,'THE CUBIC SPLINES (MUST BE AN INTEGER®
print «,°*'6<=¢KNOTS<=15) NOTE:0.0°*
print #,*IS COMPUTED AS THEB FIRST KNOT, RBRO(1l) IS®
print «,'COMPUTED AS KNOT 2, AND 128.0%BO(1l) IS*
print «»,*COMPUTED AS THE LAST KNOT.®
print «,°*INCLUDE THESE KNOTS IN THE COUNT OF YOUR®
print =, 'KNOTS AND ENSURRER THE RKNOTS ARE INPUT FROM®
print «,*'THE MINIMUM TO THE MAXIMUM®
read +,duml
print «,*INPUT THE KNOTS®
print «, ‘KNOT 1=0.0°*
aknotl=0.0
aknot2=eo(1l)
print «, 'KNOT 2=',aknot2
do 62 j=1,duml-3

print =, ‘'input knot *,3j+2

read +,aparam(Jj)
continue
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e aknotl5=128.0%e0(1) .
Ty print «,*KNOT®',duml+3,'="',aknotl5 -
’ do 63 j=1,duml-2
< it (j.ne.l) then X
- print «,°*'INPUT THE BXPANSION COEF. FOR' -
o print #,°*'KNOT=',aparam( j-1) K
- else .
- print #,*'INPUT THE BXPANSION COEF. FOR' :
g print =#,*'KNOT="',aknot2 )
end it -
read #,aparam(duml-3+3) -
b 63 continue N
-l print +«,*INPUT THE TEMP. TO BE USED TO CONSTRUCT A‘ ~
N print «»,*'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,'® .
‘ print «,*TEMP IS IN UNITS OF Bo®
- read #,aparam(duml«2-4) e
" non=1.0 "
.i call cstunc(aparam,sa,duml,nk,y,non, ;
‘A *» aknotl,aknot2,aknotlS,eo,pi,kc) -
- end if o
® if (type.eq.3) then
.- print =,'Sa(B) WILL BE READ FROM FILE input2, THR®
- print +,*‘FILB SHOULD CONSIST OF SPRCTRUM VALUBS FROM®
- print =, '(BO(1)+BIN WIDTH/2.0)* o
e print +,*'TO 128.0#BO(1)> IN STBPS OF THE BIN WIDTH® K
L . print +«,*INPUT A 1 TO CONTINUE OR A 2 TO STOP"* .
. ‘ P read #,duml
R if (duml.eq.2) then
. go to 151
- end 1f
-, e=eo(1l)-y/72.0
- do 69 k=1,nk
> e=e+y
P read (2,+) sa(k)
o 69 continue
- end 1if
- c DEFINE A(I); RECALCULATE D(I) AND CALCULATE B(I)» -
- do 75 i=1,ni -~
a(1)=0.0
aci)=0.0
b(1)=0.0 .
do 70 k=1,nk o
a(i)=a(i)+sa(k)*r(i,k)ey .
A(1)=a(1)+8p(k)nr(i,k)ny
70 continue
~ b(1i)=a(i)/d4(1)
; 75 continue
: c DEFINE SIGMA(I)>
‘{ print «,*'INPUT SIGMA(I) ASSUMES ALL SIGMAS ARR BQUAL®
9 read #,s8ig

do 80 i=1,ni
sigma(i)=sig
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80 continue
print +,*'DO YOU WISH TO APPLY A NORMAL/GAUSSAIN NOISE®
print »,°*'DISTRIBUTION TO B(I)>, INPUT A 1 FOR YES® «
read +,duml
it (duml.eqg.l)? then
print =, 'INPUT THE SEED FOR THE RANDOM NUMBER®
print «, ‘GENERATOR, MUST BE AN INTEGER®
read »,dum2
const=grand( dum2)
do 82 i=1,ni
sumran=0.0
do 81 j=1,12
const=rand(x)
sumran=sumran+const
81 continue
z(i)=gigmal(i)*(sumran-6.0)
b(i)=pb(1)+z(1i)
print #,‘*noise=*',z(1)
print »,'i=* 41, *sumran=',sumran
82 continue
end 1f
print =,°'DO YOU WISH TO APPLY A NON-NEGATIVITY"®
print »,*CONSTRAINT? INPUT 1 FOR YES®
read *,non
print *,*INPUT THE TYPE OF BASIS FUNCTION TO BE USED®
print =, *'TO CALCUKARE THE UNFOLDED SPECTRUM®
print =,°* 1=PLANCKIAN BLACK BODIES®
print =,* 2=CUBIC SPLINES®
read =,type
if (type.eqg.l) then
print *,*INPUT THE NUMBER OF BASIS FUNCIONS TO BR®
print »,'USED (MUST BE AN INTEGER LESS THAN 15)°
read #,nj

c INPUT THE INITIAL GUESS AT THE PARAMETERS OF THE
c BASIS FUNCTIONS PROGRAM ASSUMES ONE COEBFF. AND ONE :
c PARAMETER (T) PER BASIS FUNCTION .

np=2.0+nj :
do 95 j=1,n}
print «,*'INPUT THE INITIAL GUESS FOR A(J>,J=',]J
read *,param(j)
95 continue
do 100 3ji=1,nj
print », *INPUT THE INITIAL GUESS FOR THE PARAMETER®
print «,'T(J),J=',3,'TEMP IS IN UNITS OF Eo"®
read *,param( j+nj)
100 continue
end if
if (type.eq.2) then
print «,*'INPUT THE NUMBER OF KNOTS TO BE USED TO FIT®
print «,*'THE CUBIC SPLINES (MUST BE AN INTEGER®
print »,'6<=#KNOTS<=15) NOTE:0.0°*
print «,'I5 COMPUTED AS THE FIRST KNOT, EBO(1) IS®
D.6
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MRV print «,'COMPUTED AS KNOT 2, AND 128.0#EBO(1) IS®
EN print «,'COMPUTED AS THE LAST KNOT.'
| print «, *INCLUDE THESE RKNOTS IN THE COUNT OF YOUR®
) print +,'KNOTS AND ENSURE THE KNOTS ARE INPUT FROM®
print #,*'THR MINIMUM TO THE MAXIMUM'
read »,nkn
N print +, *INPUT THB INITIAL GUEBSS AT THR KNOTS®
print «,°*KNOT 1=0.0"
knotl=0.0
< knot2=eo(1)
G print #,*KNOT 2=',knot2
. do 101 j=1,nkn-3
print +,‘*input knot ', j+2
read *,param(j)
101 continue
knotl5=128.0%eo0(1)
print #,*'KNOT',nkn,'=',knotlS
do 102 j=1,nkn-2
if (J.ne.l) then
. print #,'INPUT THE EXPANSION COEF. FOR'
print «, *KNOT=',param(j-1)
else
print +,*INPUT THE EXPANSION COEF. FOR®
- print #,'KNOT=',knot2
f: end if
et read *,param(nkn-3+3)
i {0_ 102 continue
" . print #«,*INPUT THE TEMP., TO BE USED TO CONSTRUCT A‘
{: print «,'PLANCKIAN FIT BETWEEN THE LAST 2 KNOTS,'°
= print +,*'TEMP IS IN UNITS OF Eo‘
i read *,param(nkn#2-4)
np=nkn#2-4
end if
c INITIALIZE THE H MATRIX FOR THE MINIMIZATION TO THE
c UNITY MATRIX
. do 110 p=1,np
Y do 105 o=1l,np
= it (o.eqg.p) then
h(o,p)=1.0
else
h(o,p)=0.0
- end 1if
. 105 continue
. 110 continue
c INPUT THE INITTAL GUESS AT THE FUNCTIONAL VALUR OF THR®
c LOWER BOUND
print «,*INPUT THE INITIAL GUBSS AT THE FUNCTIONAL®
print «,'LOWER BOUND"*
read «,1
BEGIN THBE APPROXIMATION OF THE TRUB SPECTRUM USING THR®
UNFOLDED SPBCTRUM FROM THE SUBROUTINES BBFUNC AND
CSPUNC
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111
115
118

120

122

130

131

28
o
o

i1t (type.eqg.l) then
call bbfunc(param,su,y,nk,nj,pi,kc,non)
end 1f
if (type.eq.2) then
call csfunc(param,su,nkn,nk,y,non,knotl
* ,knot2,knotlS5,eo,pi,kc)
end it
CALCULATEB C(I)
do 115 i=1,ni
c(1)=0.0
do 111 k=1,nk
c(i))=c(1)+su(k)*r(i,k)wy
continue
continue
continue
CALCULATE CHI SQUARED
dummy=chi2
chi2=0.0
do 120 i=1,ni ,
chi2=chi2+((c(1)-b(i))/sigma(i))a*2
continue
print #,'it=*',1it,‘chi2=',chi2 .
dum3=abs( (dummy-chi2)/chi2)
1f (chi2.le.1.0e-2) then
print +,‘'minimization required',it,'iterations’
print #,°'chi2=',chi2
do 122 p=1l,np
print «,‘'parameter=',param(p)
continue
e=(eo(l1)-y/2.0)+(nk+1.0)ny
do 130 k=1,nk

A T

e=e-y
write (7,%) e,"' ',sa(nk+l-k) ‘{
continue g
write (7,*) eo(1),* *,*0.0°" A
if (type.eq.l) then R
call bbfunc(param,su,y,nk,nj,pi,kc,non) j
end 1t
if (type.eqg.2) then ]
call csfunc(param,su,nkn,nk,y,non -4
* s knotl,knot2,knotl5,eo0,pi,kc) _3
end 1t ]
e=eo(1l)-y/2.0 g

do 131 k=1,nk
e=e+y
write (7,+) e,"®
continue
go to 151
end it
if (chi2.1lt.ni.and.dum3.1t.1.0e-2) then
PRINT ACTUAL SPECTRUM AND THE APPROXIMATED SPRCTRUM
TO AN OUTPUT FILE

.
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print +,‘'minimization required*',it,‘'iterations’
print #,°'chi2=',chi2
do 140 p=1l,np
print »,‘'parameter=‘',param(p)
140 continue
e=(eo(l)-y/2.0)+(nk+l)wy
do 149 k=1,nk
e=e~y
write (7,%) e,* ',sa(nk-k+l1)
149 continue
write (7,+«) eo(l),*' *,'0.0"
1if (type.eqg.l) then
call bbfunc(param,su,y,nk,ni,pi,kc,non)
end it
if (type.eq.2) then
call csfunc(param,su,nkn,nk,y,non,
* knotl,knot2,knotlS,eo,pl,kc)
end it
e=eo(1)-y/2.0
do 150 k=1,nk
e=e+y
write (7,%) e,' ‘',su(k)
150 continue
else
it=1t+1
-~ call minimize(param,y,nk,nj,pi,kc,non,c,b,sigma
# ,np,ni,h,r,type,nkn,knotl,knot2,knotl5,eo)
go to 118
end 1if
151 continue
close (7)
stop
end

c PLANCKIAN BLACK BODY BASIS FUNCTION SUBROUTINE
subroutine bbfunc(param,su,y,nk,nj,pi,kc,non)
real+«8 eo(20),x,pi,kc,param(30),3u(1280),e,y
integer k,3J,nk,nj,non

{ common eo(20)
[ print «,eo(1l)
] e=eo(1)-(y/72.0)
| do 2000 k=1,nk
e=a+y
su(k)=0.0
do 1900 3j=1,nJ
x=param( J)#(15.0/(piakcrparam( j+nj))ie+4)
if (e/(kc*param( j+n3i)).gt.86.0) then
su(k)=0.0
else
su( k)=gu( k)+x»{e**3 ,0/(exp(e/(kcrparam( j+nj)))
-1.0))
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end if
if (non.eqg.l.and.su(k).1t.0.0) then
su(k)>=0.0
end if
1900 continue
2000 continue
return
end

c CUBIC SPLINE BASIS FUNCTION SUBROUTINE
subroutine csfunc(param,su,nkn,nk,y,non,
*knotl,knot2,knotlS5,eo,pi,kc)
real+8 param(30),kn(15),coef(15),num,den
real+8 planck,const,pi,kc,t,x,slope,su(1280),y,e
real+8 knotl,knot2,knotl5,eo(20)
integer j,k,non,nk,nkn
kn(1l)=knotl
kn( 2)=knot2
do 2010 j=3,nkn-1
kn( j)=param( j=2)
continue
kn(nkn)=knotl5
do 2020 j=2,nkn-1
coef( j)=param( j+nkn-4)
continue
t=param(2+*nkn-4)
e=eo(1l)~-y/2.0
do 2035 k=1,nk
e=e+y
su(k)=0.0
do 2030 j=2,nkn
if (J.eq.2) then
if (e.ge.kn(3).and.e.lt.kn(4)) then
num=(e-kn{ j+1))+*(e~-kn( j+2))*(e-kn( 3+3))
den=(kn{ J)=kn{ J+1))«(kn( J)=kn( 3+2) )«
* (kn( 3)=-kn( 3J+3))
su( k) )=coef( j)*num/den+su(k)
end if
if (e.ge.kn(2).and.e.lt.kn(3)) then
slope=1.0/(kn(2)=kn(3))
su(k)=coef( J)*#(1l.0+((e-kn(2))«slopea))+su(k)
end it
if (e.lt.kn(2).or.e.ge.kn(4)) then
su(k)=0,0+su(k)
end if
end 1f
if (j.eq.3) then
if (e.ge.kn(4).and.e.lt.kn(5)) then
if (nkn.gt.6) then
num=( e-kn( J+1))«(a@-kn( j+2))*(e-kn( j+3))
D.10
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den=( kn( J)=kn( J+1)»)«(kn( 3 )=kn( 3+2) )+
(kn{ 3)=-kn( j+3))
su(k)=coef( j)*num/den+su(k)
else
su(k)=0.0+su(k)
end it
end it
if (e.gt.kn(3).and.e.lt.kn(4)) then
num=(e-kn{ j-1))*(e-kn( j+1))*(e-kn( j+2))
den=(kn( 31 )=Kn( 3=1))*(kn( J)=Kn( j+1) )+
(knd 3I)=-kn{ 3+2))
su(k)=coef( j)*nun/den+su( k)
end 1f
if (e.ge.kn(2),and.e.lt.kn(3)) then
slope=1.0/(kn(3)-kn(2))
su(k)=coef( j)*((e-kn(2))+*slope)+su(k)
end 1t
it (e.lt.kn(2),0or.e.ge.kn(S5)) then
su(k)=0.0+su(k)
end 1if

end if
if (jJ.ge.4.and.j.lt.(nkn-2)) then

if (e.ge.kn(j+l).and.e.lt.kn(3+2)) then
if (kn(j+2).ne.kn(nkn-1))> then
num=( e-kn{ j+1))*(e-kn( j+2))*(e-kn( j+3))
den=(kn( 3)=-kn( 3+1))*(kn( J)-Kn( j+2) )
(kn{ Jj)=-kn( 3+3))
su{ k)=coef( j)*num/den+su(k)
else
su(k)=0.0+su(k)
end if
end if
1f (e.ge.kn(3j).,and.e.lt.kn( j+1)) then
num=( e-kn( j=1))*(e-kn( j+1))*(e-kn( 3+2))
den=(kn( 3 )-kn{ 3=-1)M)*(kn( 3 )-kn( J+1) )«
(kn¢ 3)=-kn( j+2))
su(k)=coef( j)*»num/den+su( k)
end 1f
it (e.ge.kn(j-1).and.e.lt.kn( j)) then
num=( e-kn( j=2))*(e-kn( j=1))«(e-kn{ J+1))
den=(kn( J)-kn( j=2))«(kn( 3 )=kn( 3=1) )=
(kn{ 3)=kn( j+1))
su( k)=coef( j)*num/den+sul( k)
end it
if (e.ge.kn( j-2).and.e.lt.kn( j-1)) then
if (kn(j-2).ne.kn(2)) then
num=( e-kn{ j=3))*(e-kn( 3-2))*(e-kn¢ 3-1))
den=(kn( 3 )=kn{ 3=-3)2)*(kn( 3 )=kn( J-2) I~
(kn( 3)=kn( =1
su( k)=coef( j)*num/den+sul k)
else
su{k)=0,0+su( k)
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end if
end it
it (e.lt.kn(j-2).0or.e.ge.kn( j+2)) then
su(k)=0.0+su(k)
end if
end it
it (jJ.eq.(nkn-2)) then
if (e.gt.kn(nkn-2).and.e.lt.kn(nkn-1)) then
slope=1.0/(kn(nkn-2)-kn{nkn-1))
su(k)~coef( J)*(1.0+((e-kn(nkn-2))*3lopel)+sulk)
end 1t
it (e.ge.kn{(nkn-3).and.e.lt.kn{(nkn-2)) then
num=( e-kn( j~2))*»(e-kn{ j=-1))«{e-kn( j+1))
den=(kn{ 3 )=kn( j=-2))~(kn( 3 )-kn( j~1))»
* (kn( 3)-kn(3+1))
su(k)=coef( j)*num/den+su(k)
end if
if (e.ge.kn(nkn-4).and.e.lt.kn(nkn-3)) then
num=(e-kn( j~3))*(e-kn( j=-2))*{e-kn( j=-1))
den=( kn( 3 )=kn( 3=-3))*(kn( j)=kn( j=2) )«
* (kn( 3)-kn(3j~-1))
su(k)=coef( J)«num/den+su( k)
end 1if
if (e.lt.kn(nkn-4).or.e.ge.kn(nkn-1>> then
su(k)=0.0+su(k)
end it
end 1if
it (j.eq.(nkn-1)) then
if (e.ge.kn{(nkn-2).and.e.lt.kni(nkn-1)>) then
slope=1.0/(kn{nkn-1)-kn{(nkn-2))
su(k)=coef( j)*((e-kn(nkn-2))*slope)+sulk)
end 1t
if (e.ge.kn(nkn-3).and.e.lt.kn(nkn-2)) then
num=( e-kn{ j~3))*(e-kn( j-2))*(e-kn( 3-1))
den=(kn{ 3 )=kn( 3=3))*(kn( 3 )=kn( J-2) )«

* (kn( Jl)-kn( j~-1)>»
su(k)=coef( j )*num/den+su( k)
end 1t

it (e.lt.kn(nkn-3).or.e.ge.kn(nkn-1)) then
su(k)=0.0+s8u(k)
end it
end it
it (j.eq.nkn) then
if (e.ge.kn(j-1l).and.e.le.kn( j)) thean
X=15.0/(pisakcet )waq
planck=x+(kn( j=-1)#«%3,0)/
* (exp(kn{ 3-1)/(kc*t)>)-1.0)
const=~coetf( j-1)/planck
if (e/(kc+*t).ge.69.0) then
su( k)=0.0+su(k)
elae
su{ k)=congtaxs(ess3,0)/
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* (exp(e/(kc*t))~1.0)+s8ul(k)
end 1f
else
su(k)=0.0+su(k)
end if
end it
2030 continue
if (non.eqg.l.and.su(k).1t.0.0) then
su(k)=0,0
end it
2035 continue
return
end

<
L%
.
“~
~
\
*>

c SUBROUTINE TO MINIMIZE CHI SQUARED
subroutine minimize(param,y,nk,nj,pi,kc,non,c
+,b,sigma,np,ni,h,r,type,nkn,knotl,knot2,knotl5,eo0)
real+8 grchi2(30),param(30),b(20),c(20),sigma20)
real+«8 gradc(30),sprime(30),pprime,t
real+*8 y,pi1,kc,r(20,1280)>,h(306,30),norms,s(30)
real+8 v(30,1),gprime(30),g9¢(30),q¢(30,1),a(30,30)
real+«8 duml,sumi,sumj
real+*8 sumk,su(1280),z(30,30),sump,sumo,pc(30),1
real+8 kn(15),knotl,knot2,knotl5,eo(20)
integer nkn,p,np,i,ni,o,reset,nk,nj,non, J,k,type
c CALCULATE THE GRADIENT OF CHI SQUARED
t=0
do 2500 p=1,np
grchi2(p)»=0.0
call gradientc(param,y,nk,nj,pi,kc,non,c,
* gradc,r,np,ni,p,type,nkn,knotl,knot2,knotl5,eo)
do 2400 1=1,ni
grchi2(p)li=grchi2(p)+((c(1i)=b(1))/(sigmal(i)aw2))
* *gradc(1i)
2400 continue
grchi2(p)=grchi2(p)«2.0
2500 continue
2525 continue
c CALCULATE THE SEARCH DIRECTION
do 2600 p=1l,np
sprime(p)=0.0
do 2550 o=1,np
sprime(p)=-~-h(p,o0)egrchi2(o)+sprime(p)
2550 continue
2600 continue
c NORMALIZE TO FIND THB UNIT SBARCH DIRECTION
duml=0.0
do 2700 p=1,np
duml=duml+sprime(p)«*2.0
2700 continue
D.13
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2800

2810
2820

2850

2900

2902

2903

2904

2905
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a
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norms=sqr t(duml) ™
do 2800 p=1,np ]
s(p)=sprime(p)/norms .
continue f:
call linsearch(np,param,t,s,y,nk,nj,pi,kc,non,ni jh
*,r,b,sigma,h,reset,l,type,nkn,knotl,knot2,knotl5,e0) f:
if (reset.eq.l) then »
reset=0.0
do 2820 p=l1l,np .
do 2810 o=1,np N
it (o.eq.p) then
h(p,o0)=1.0
else
h(p,0)=0.0 (]
end it e
continue e
continue o
go to 2525 e
end it s
continue »
do 2900 p=1l,np -
pprime(p)=param(p)l+tws(p)
continue ey
it (type.eq.2) then .
do 2903 p=1,nkn-3 -
do 2902 Jj=1,nkn-3 3
kn( j+2)=pprime( 3) T
continue -
kn(1)=knotl 2
kn( 2)=knot2 -
kn{nkn )=knotl$S g
if (kn(p+2).le.kn(p+l).or.kn(p+2).ge.kn(p+3)) then ’
t=t/2.0 "
go to 2850 P
end 1t Yy
continue -,
end if i
do 2904 p=1l,np ]
print *,‘'parameter=‘',param(p),*'s)pl=',s(p),'t=",¢t -iq
continue i
CALCULATE NEW H MATRIX BASBD ON NEW PARAMETERS »j{
do 2905 p=1,np =
v(p,1)=pprime(p)-param(p) s
continue
CALCULATE A NBW C(I) POR NEW PARAMETERS

it (type.eq.l) then

call bbfunc{pprime,su,y,nk,nj,pi,kc,non)
end if
if (type.eqg.2) then

call cstunc(pprime,su,nkn,nk,y,non,knotl
* ,knot2,knotl5,eo,pl,kc)
end 1if

D.14
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N do 2908 i=1,ni j
L pc(1)=0.0
; do 2907 k=1l,nk
e pci(i)=pc(1)+su(k)I*r(i, k)iny
3; 2907 continue }
R 2908 continue <
.3. do 2915 p=1l,np
. call gradientc(pprime,y,nk,nj,pi,kc,non,pc

* ,gradc,r,np,ni,p,type,nkn,knotl,knot2,knotl5,eo)

o~ gprime(p)=0.0

<. do 2910 i=1,ni

oy gprime(p)=gprime(p)l+((pc(1i)=b(1))/sigmali)as2)
e * *gradc(1i)

e 2910 continue

gprime(p)=gprime(p)«2.0
2915 continue

FPrrrres A L AR

= do 2925 p=1,np

:, call gradientc(param,y,nk,nj,pi,kc,non,c

T * ,gradc,r,np,ni,p,type,nkn,knotl,knot2,knotlS5,eo)
<. g(p)=0.0

bo s do 2920 i=1,ni

o g(pI=g(p)l)+((c(i)-b(1))/sigmal(i)e*2)egradc(i)

2920 continue
g(p)=g(p)i)+*2.0
2925 continue
do 2930 p=1,np
- q{p,l)=gprime(p)l-gi(p)

f)
"')n
»
[T &5 <5 NSV

gat 1
» L]

.- 2930 continue

:} do 2936 p=1,np
= do 2934 o=1,np

:: sum3=0.0

~d do 2932 j=1,1

- sumj=sumj+v(p, J)*v(o,j)
e 2932 continue

- a(p,o)=sumj

Ny 2934 continue
- 2936 continue
p do 2942 j=1,1

. do 2940 1=1,1

o~ sump=0.0

Vs do 2938 p=1,np
NN sump=sump+v{(p, j)*q(p,1)
> 2938 continue

G dAuml=sump

- - 2940 continue

e 2942 continue

- do 2946 p=l,np

e do 2944 o-l,np
‘:Q a(p,o0)=a(p,0)/duml

' 2944 continue

o . 2946 continue

'2 .2}3 do 2956 p=1,np .
;i - D.15 ’
&

"\.“

T

o

T N NN T Ly el o NN e e e R a S e e e N e




~
“rr
o

2948
2950
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a' 2960

2962
2964

b 2993
2995

3000

3010
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do 2954 o=l1l,np
sumj=0.0
do 2952 3j=1,np
sumi=0.0
do 2950 1=1,1
sumk=0.0
do 2948 k=1,np
sumk=sumk+qg(k,1)*h(k,o0)
continue
sumi=sumi+sumke+*q( j,1)
continue
sumj=sumj+sumi+h(p,J)
continue
z(p,0)=sumj
continue
continue
do 2964 i=1,1 v
do 2962 j=1,1 5
sump=0.0 W ]
do 2960 p=1,np o
sumo=0.0 4
do 2958 o=1,np
sumo=sumo+h(p,o0)+*qg( o, 3)
continue
sump=sump+sumo*g(p,1i)
continue
duml=sump
continue
continue
do 2995 p=1,np
do 2993 o=1,np
z(p,0)=z(p,0)/duml
h(p,0)=h(p,0)+al(p,0)-z(p,0)
continue
continue
LET PPRIME BQUAL THE NEW PARAMETERS AND RE-EVALUATE CHI
SQUARED
do 3000 p=1,np
param(p)=pprime(p) ?J
continue sy
LBT C(I)»=PC(I)
do 3010 i=1l,ni
c(i)=pc(1)
continue
return ?5
end N
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SUBROUTINE TO CALCULATE THE STEP SIZE IN THE UNIT kﬁ
SRARCH DIRECTION e
subroutine linsearch(np,param,t,s,y,nk,nj,pi,kc,non >
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real+8 h(30,30),h2,ht,m,t,to,ho,mo,t2,1,m2,z,duml
real#»s8 tl,w,mu,sigma(20)
real+«8 param(30),8(30),y,pl,kc,x(20,1280),b<20)
real+8 knotl,knot2,knotl5,eo(20)
integer nkn,type,np,reset,ni,nj,nk,non
t=0.0
call calctunc(np,param,t,s,y,nk,nj,pi,kc,non
*,ni,r,ht,b,sigma,m,type,nkn,knotl,knot2,knotlS,eo)
ho=ht
mo=m
if (mo.gt.0.0) then
reset=1
return
end if
to=0.0
if(ho.le.l) then
1=ho+(mo/2.0)
end it
if (1.0.1t.(~2.0%C(ho-1)/mo)) then
t2=1.0
else
t2=-2.0+«(ho-1)/mo
end 1f
3600 continue
t=t2
“ call calcfunc(np,param,t,s,y,nk,nj,pi,kc,non
b *,ni,r,ht,b,sigma,m,type,nkn,knotl,knot2,knotl5,eo0)
h2=ht
m2=m
if (m2.9gt.0.0) then
z2=3.0*(ho-h2)/(t2=-to)+mo+m2
duml=z#*2.0+mo+m2
if(duml.eq.0.0) then
tl=to+mow(t2-t0)/(2.0%(z+mo )
else
w=sqrt(z+«+2-mo+*m2)
mu=(m2+w-=z )/(2.0*w+m2-mo }
tl=t2-mus({t2-to)
end 1t
end if
if(m2.le.0.0.and.h2.gt.ho) then
t2=(to+t2)/2.0
go to 3600
end it
if (m2.eq.0.0.and.h2.1t.ho) then
tl=t2
end 1t
if (m2.1t.0.0.and.h2.le.ho) then
duml=t2-to
to=t2
ho=h2
) mo=m2
e D.17
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4100
4200
C

4300
c

Y
o . >

PP 0 N N
oy OO 50 .

t2=t2+2.0+(Auml)
go to 3600

end 1t

it (m2.eq.0.0.and.ho.eq.h2) then
tl=to

end if

t=t1

return

end

SUBROUTINE TO CALCULATE THE FUNCTION TO MINIMIZE
H=F( PARAM+T»*S)
subroutine calcfunc(np,param,t,s,y,nk,nj,pi,kc
*,non,ni,r,ht,b,sigma,m,type,nkn,knotl,knot2,knotl5,eo)
real+«8 y,tparam(30),param(30),8u(1280),b(20),tc(30)
real#«8 t,gradc(30),m,8(30),e,ht,sigma(20)
real+8 grchi2(30),pi,kc,r(20,1280)
real+8 knotl,knot2,knotl5,eo(20)
integer nkn,type,p,i,np,ni,nk,k,non,nj
do 4000 p=1,np
tparam(p)=param(p)l+tes(p)
continue
CALCULATE THB UNFOLDED SPECTRUM
if (type.eq.1l) then
call bbfunc(tparam,su,y,nk,nj,pi,kc,non)
end 1if
if (type.eq.2) then
call csfunc(tparam,su,nkn,nk,y,non,knotl
* ,knot2,knotl5,eo,pi,kc)
end if
CALCULATEB C(1) FOR NEW PARAMETERS
do 4200 i=1,ni
tc(1)=0.0
do 4100 k=1,nk
tc(1)=tc(i)+sulk)wr(i,k)*y
continue
continue
CALCULATE CHI SQUARED FOR THE NEW PARAMETERS
ht=0.0
do 4300 i=1,ni
ht=ht+((tc{(1)=-b(1))/sigmal(i))«+2.0
continue
CALCULATE THB SLOPBE OF CHI SQUARED
do 4500 p=1,np
call gradientc(tparam,y,nk,nj,pi,kc,non
* ,tc,gradc,r,np,ni,p,type,nkn,knotl,knot2,knotl5,eo)
grchi2(p)ir=0.0 ‘
do 4400 1i=1,ni
grchi2(p)i=grchi2(p)+({(tc(i)-b(1))/sigma(i)»«+2,0)
* sgradc(i)
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c

4400

4500

4600

5000

5100
5200

5300

continue
grchi2(p)=2.0+grchi2(p)

continue

n=0.0

do 4600 p=1l,np
m=m+grchi2(p)l+s(p)

continue

return

end

SUBROUTINB TO CALCULATE THE GRADIENT OF C(1I)
subroutine gradientc(param,y,nk,nj,pi,kc,non,c,gradc
*,r,np,ni,x,type,nkn,knotl,knot2,knotls5,eo)
real«8 delta,newpar(30),param(30),£(30),su(1280)
real+«8 r(20,1280),gradc(30),c(20)
real+*8 knotl,knot2,knotl5,eo0(20),pi,y,kc
integer nkn,i,x,ni,p,np,k,nk,nj,non,type
delta=0.01
do 5000 p=1l,np
if (p.eqg.x) then
newpar(p)=param(p )+deltasparam(p)
else
newpar(p)=param(p)
end if
continue
if (type.eq.l) then
call bbfunc(newpar,su,y,nk,nj,pi,kc,non)
end 1f
if (type.eq.2) then
call csfunc{newpar,su,nkn,nk,y,non,knotl
* ,knot2,knotlS5,eo,pi,kc)
end 1if
CALCULATE C(I) FOR THE NEW PARAMETERS (LET IT EQUAL
FCI))
do 5200 i=1,ni
£(1)=0.0
do 5100 k=1,nk
fC1)=fCi)+8ulk)er(i, k)ny
continue
continue
do 5300 1=~],nt
gradc(i)=(f£(1)-c(1i))/(deltarparamix))
if (abs(f(i)-c(i)).1lt.le~6) then
print #»,*WARNING P(I)~-C(I) LBSS THAN 1.0B-6"
end it
continue
return
end
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+ Appendix E: Validation Results

This appendix is a continuation of the results presented in Section V. The
cases studied using one planckian basis function are presented in Table XII and

the final four cases studied using cubic spline basis functions with fixed knots are

PRl ™

presented in Table XIII. Additionally, the linear plots of the actual and unfolded

spectra for the BC cases are presented. The actual and unfolded spectra for the

BP and BF1, BF2, BF3, and BF4 were identical so no plot is presented. Also, the

plots for cases BF5, BF6, BF7, and BF8 are presented even though x® was greater
\ than 20.0.

TABLE XII
Continuation of the Planckian Basis
Function Validation Test (a,b)
Parameters
: Initial Unfolded
. T

4
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B O 00 6080
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X
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a. Actual parameters equal 2.0 and 5.0

- b. o, = 0.01 and x*< 0.01 in all cases The initial case is the initial guess at the
unfolded spectrum
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TABLE XIII
Continuation of the Validation Cases for the Cubic
Spline Basis Functions With Fixed Knots (a,b,c)

Case  Spectra Knots Coeflicients T X2
BF5 Actual 10,0 250 4.0 5.0 3.0 10.0
50.0 80.0 1.6 1.0
Initial 5.0 30.0 2.0 7.0 1.0 2.0
40.0 60.0 3.0 4.0
Unfolded 5.0 30.0 3.9 4.6 2.5 140 33.0
40.0 60.0 1.9 1.5 ;
BF6 Actual 50 100 4.0 5.0 3.0 10.0
25.0 50.0 1.6 1.0
Initial 7.0 30.0 2.0 7.0 1.0 20.0
70.0 60.0 3.0 4.0
Unfolded 7.0 30.0 4.6 3.8 -0.3 2.0 2.3e4
70.0 90.0 -17.0 -81.0
BF7 Actual 5.0 100 4.0 5.0 3.0 10.0
25.0 50.0 1.6 1.0
Initial 7.0 30.0 2.0 7.0 1.0 2.0
70.0 90.0 3.0 4.0
Unfolded 70 300 5.0 3.5 1.5 -12.0 1.9e3
70,0 90.0 0.55 -0.17
BF8 Actual 10.0 25.0 4.0 5.0 3.0 10.0
50.0 80.0 1.6 1.0
Initial(c) 50 300 2.0 7.0 1.0 20.0
40.0 60.0 3.0 4.0
Unfolded 50 300 3.9 4.6 2.5 14.0 33.0
40.0 60.0 1.9 1.5

a. o; = 0.01

b. Convergence criteria: x°< 1.0e-2 for all cases or 0.01%% change in 3* for case
BF5 and 0.1% change in x* for cases BF6, BF7, BF8

c. Fixed knots at 0.0,1.0,128.0 are implicit in definition of these splines.
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Appendix F: Test Case Results ’

This appendix is a continuation of Section V and presents the linear plots of

el

the cases presented in Section V. If the linear plot of the actual and unfolded

‘v‘.{-{

spectra for a given test case is not in this section and the x2 value for the case in

S

Section V is acceptable (i.e. less than 20.0), then either the actual and unfolded

spectra match exactly or the plots were presented in Section V.
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Figure 48. Linear Plot of the Actual and Unfolded Spectra
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Figure 49. Linear Plot of the Actual and Unfolded Spectra
Versus Energy for Case CP4
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[ Appendix G: Figure of Merit Study
,.
N ‘..:':
PN In order to determine the accuracy of the approximation, eight figures of
N merit were considered. The goal of this study was to determine if any of the
%
::} ficures of merit could be related to x°. By relating the figure of merit to X2, a
e
o method for determining the accuracy of the unfolding procedure may be esta-
o blished. The eight figures of merit are as follows: the average absolute error,
"'
:f.: AAE; the average absolute relative error, AARE; the root mean square average
»
S absolute error, RMSAAE; the root mean square average relative error, RMSARE;
N the weighted average absolute error, WAAE; the weighted average absolute rela- \
1 ]
K j: tive error, WAARE; the weighted root mean square average absolute error, :
- K
N WRMSAAE: and the weighted root mean square average relative error, 4
@
5o WRMSARE. Equations (22) thru (29) present the figures of merit studied and the J
. <
-::f approximations used by LCDR. Kirk Mathews to produce a computer program to .
~ )
- 4
o - calculate the figures of merit. The program was validated using case BC1 and the 3
L Ve
D TIS Solver mathematics package. -3
- -;1
< =fl:u(E)-Sa(E)|dE :::
AE o 22 .
~Y = S S, (E)=S.(Ex) | (22)
-N.':- £ R
) 2
- - |S.(E)=S.(E) | E 1:1
. - !
2 S, (E)+S,(E) 1
- 2 )
o RE 1 (23) R
": —_ E |Su(Ek )—Sa (Ek) I -:
-'.\ ~ -
oy ; [su (Ex)+S, (Ex) :
\‘fﬂ -
:lj:' Due to the fact all the energy bin widths were equally spaced, the average abso- j‘
- lute error and average relative error can be calculated by dividing Equations (22) 3
~ -
’ and (23) by nk, the number of energy bins used to evaluate the integrals. A
::__‘ Je :
. .9
N R
- G-1 )
- 2
.-" e N
\\\\-.-,\‘-"\.'\."\x \\‘\\\\\'\‘\‘ NN *
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Thus
B
\.",)‘ AE
| AFE = — )
A e (24)
RE
AARE = —
A (25)
RMSAAE = |AE (26)
nk
RMSARE = | RE (27)
nk
Finallv the weighted figures of merit were calculated by weighting the absolute
error and relative error with a factor of 1/E.
Thus
: _ s,
E
WAAE ] - . 28
'. —_ Z |‘§u(Ek)-ba(Ek) | (2%)
A oe k Ex
' S, (E)=S,(E
] |S,(E)=S.(E)] Ly
SAE)+S,(E) | [ B
2
WARE ) (29)

The weighted figures of merit can then be calculated using Equations (2+4) thru
(27) by replacing the absolute error and the relative error with the weighted abso-

Iite error and the weighted relative error respectively.

The results of this study are presented in Table XIV.
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PSS TABLE XIV o
Comparison Of Figures Of Merit -
: For Cases Studied (a) ::
. .}-\
: RMS RMS WRMS  WRMS ¢
Cs X AAE ARE AE RE  WAAE WAARE AE RE )
) NPO 0.010 4e-4 0.012 7e-4 0.017 Se-4 0.010 9e-4 0.010 ,
NCO 0.020 0.017 0.047 0.027 0.066 0.028 0.020 0.042 0.035 S
BC4 0.026 0.001 0.001 0.003 0.002 0.005 0.002 0.008 0.002 2{
BC2 5.4 0.014 0.013 0.029 0.017 0.037 0.014 0.053 0.018 -
NC04 5.5 0.06 0.11 0.12 0.13 0.23 0.091 0.34 0.11 ~-
NPO4 6.0 0.005 0.095 0.008 0.11 0.009 0.086 0.012 0.096 -
NCO07 7.2 0.10 0.28 0.14 0.38 0.11 0.11 0.15 0.20 -
, NCO3 8.6 0.13 0.42 0.19 0.59 0.28 0.19 0.33 0.31 v
NC06 8.8 0.064 0.051 0.13 0.073 0.23 0.078 0.32 0.10 o
/ NCO0S5 9.4 0.099 0.44 0.22 0.67 0.27 0.20 0.39 0.36 7
" NPQ7 9.7 0.003 0.093 0.004 0.12 0.003 0.036 0.004 0.063 :i
‘¢ NCO1l 11.0 0.14 0.35 0.22 0.46 0.35 0.19 0.44 0.26 "
; NPO6 12.0 0.004 0.048 0.007 0.051 0.005 0.030 0.008 0.037 f
. NPOS5 13.0 0.006 0.17 0.012 0.23 0.010 0.10 0.015 O0.14 -
- NC09 13.0 0.12 0.15 0.18 0.19 0.23 0.11 0.30 0.14 ::
o NPO9 15.0 0.004 0.18 0.006 0.22 0.007 0.097 0.009 0.13 }
- NC08 15.0 0.080 0.065 0.16 0.081 0.29 0.1l1 0.44 0.14 .ﬁ
X NPO3 16.0 0.002 0.036 0.004 0.38 0.004 0.037 0.005 0.040 ‘o
ii} PC3 16.0 0.005 0.071 0.008 0.22 0.009 0.46 0.012 0.86 A
g - NPOB8 17.0 0.005 0.086 0.011 0.10 0.012 0.092 0.017 0.10
. NC02 17.0 0.18 0.19 0.31 0.22 0.51 0.19 0.65 0.22
N cp3 17.0 0.14 0.23 0.28 0.30 0.57 0.22 0.84 0.30
~ CcP4 17.0 0.14 0.27 0.28 0.45 0.56 0.23 0.84 0.33
. NC10 18.0 0.038 0.067 0.073 0.082 0.11 0.049 0.16 0.063
~ NPOl 18.0 0.004 0.28 0.005 0.42 0.003 0.092 0.004 0.21
NP10O 18.0 0.003 0.042 0.005 0.049 0.004 0.027 0.006 0.032 -~
BC3 19.0 0.071 0.13 0.089 0.22 0.094 0.050 0.12 0.11 N
CpP2 20.0 0.12 0.086 0.30 0.12 0.59 0©0.20 0.90 0.29 :Q
NPG2 29.0 0.003 0.15 0.004 0.20 0.003 0.054 0.004 o0.10 -
BF5 33.0 0.081 0.20 0.93 0.35 0.078 0.064 0.091 0.17 :\
BF8 33.0 0.081 0.20 0.93 0.35 0.078 0.064 0.091 0.17 -
. PC2 38.0 0.003 0.058 0.003 0.14 0.003 0.22 0.004 0.57 "
% PCl 71.0 0.020 0.29 0.029 0.43 0.028 0.77 0.039 1.11 e
2 BC1 230.0 0.094 0.17 0.12 0.22 0.10 0.096 0.14 0.16 N
cpl 380.0 0.60 1.7 0.85 1.8 1.3 1.0 1.6 1.3 _ﬂ
BF7 1,900 0.12 0.79 0.23 1.2 0.37 0.29 0.51 0.61 "
BF6 23,000 0.42 1.3 0.59 1.6 0.50 0.58 0.61 0.94 a
a. All figures of merit for case BPl, BP2, BP3, BFl, BF2,
BF3, and BF4 were less than 0.01
. G.3
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Abstract

The purpose of this study was to develop the
methodology for and to implement a computer program to
approximate a solution to a system of Fredholm integral
equations. The system of eguations used in this study is >
representative of the equations formed during the detection e
of pulsed radiation using a series of detectors with Y
asymmetric response functions. Though general in nature and -
applicable to all systems of fredholm integral eguations, o
the egquations studied are of importance to the Defense
nuclear Agency with regard to the measurement of radiation
apectra during underground nuclear effects simulation
testing.

The deconvolution technigque consisted of representing
the unfolded spectrum as a weighted sum of basis functions.
This unfolded spectrum, the actual spectrum, and a predicted
spectrum were then used to form a X~ test statistic. By
adjusting the parameters in the basis functions and their
weights, X< was minimized and the unfoided spectrum was
corrected to approximate the actual spectrum.

The methodology for this deconvolution technique was
then converted into a general computer program. The

validation cases conducted on the two types of spectra .. nﬂi
confirmed the reliability of the methodology and the ) }j
computer program. Additionally, an initial study with ¥$
simulated measurement error added to the S
N measured-to-predicted ratios showed that the actual spectrum N
i could not be returned exactly. The second study A
= approximated the actual spectrum with an unfolded spectrum f.q
y using a second set of basis functions. An acceptable o
. approximation was conducted; however, certain artifacts were e
v discovered in the unfolded spectrum. The validation cases jj
f and preliminary test cases conducted prove that the computer O
; program based on the methodology presented in this study is e
. a viable means of approximating an actual radiation .
b -
3 spectrum, .
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